Влияние прерывистой закалки на микроструктуру, механические свойства и плотность дислокаций стали AISI 4340

Бурак Налджаджы, Омер Джыхад Айдын, Салых Йилмаз, Волкан Кылыджлы

Аннотация


Исследовано влияние прерывистой закалки на микроструктуру, механические свойства и плотность дислокаций стали AISI 4340. Проведены металлографический и рентгеноструктурный анализы, испытания на растяжение, определена твердость стали по Викерсу. Рассчитана плотность дислокаций. Рассмотрено влияние длительности выдержки при 300 °C в процессе прерывистой закалки на структуру и свойства стали. Установлено формирование дуплексной микроструктуры, состоящей в основном из мартенсита и бейнита, после прерывистой закалки по всем исследованным режимам. Показано положительное влияние дуплексной структуры на механические свойства стали AISI 4340. Установлено, что наиболее высокие значения плотности дислокаций, предела прочности и твердости получены в стали, содержащей 34,7 % бейнита, 55 % мартенсита и 10,3 % остаточного аустенита, после прерывистой закалки с выдержкой при 300 °C, 5 мин.

Ключевые слова


сталь AISI 4340; прерывистая закалка; бейнит + мартенсит; дуплексная микроструктура; плотность дислокаций; механические свойства

Полный текст:

PDF

Литература


Marques A., Souza R. A., Pinto G. A. M. et al. Evaluation of the softening mechanisms of AISI 4340 structural steel using hot torsion test //j. Mater. Res. Technol. 2020. V. 9, Is. 5. P. 10886 - 10900.

Manokaran M., Kashinath A. S., Jha J. S. et al. Influence of tempering in different melting routes on toughness behavior of AISI 4340 steel //j. Mater. Eng. Perform. 2020. V. 29. P. 6748 - 6760.

Ryder M. A., Montgomery C. J., Brand M. J. et al. Melt pool and heat treatment optimization for the fabrication of high-strength and high-toughness additively manufactured 4340 steel //j. Mater. Eng. Perform. 2021. V. 30. P. 5426 - 5440.

Safi S. M., Besharati Givi M. K. A new step heat treatment for steel AISI 4340 // Met. Sci. Heat Treat. 2014. V. 56. P. 78 - 80.

Li Y., Zhang F., Chen C. et al. Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics // Mater. Sci. Eng. A. 2016. V. 651. P. 945 - 950.

Wang K., Tan Z., Gao G. et al. Microstructure-property relationship in bainitic steel: The effect of austempering // Mater. Sci. Eng. A. 2016. V. 675. P. 120 - 127.

Wang T. S., Yang J., Shang C. J. et al. Microstructures and impact toughness of low-alloy high-carbon steel austempered at low temperature // Scr. Mater. 2009. V. 61. P. 434 - 437.

Heidary O., Mirzaee O., Honarbakhsh Raouf A., Borhani E. Texture development during austempering process of an AISI 4130 steel // Mater. Sci. Eng. A. 2020. V. 793. 139751.

Lee W. S., Su T. T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions //j. Mater. Process. Technol. 1999. V. 87. P. 198 - 206.

Tartaglia J. M., Hayrynen K. L.Comparison of fatigue properties of austempered versus quenched and tempered 4340 steel //j. Mater. Eng. Perform. 2012. V. 21. P. 1008 - 1024.

Salemi A., Abdollah-zadeh A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel // Mater. Charact. 2008. V. 59. P. 484 - 487.

Tartaglia J. M., Lazzari K. A., Hui G. P., Hayrynen K. L. A comparison of mechanical properties and hydrogen embrittlement resistance of austempered vs quenched and tempered 4340 steel // Metall. Mater. Trans. A. 2008. V. 39. P. 559 - 576.

Han X., Zhang Z., Rong Y., Thrush S. J. et al. Bainite kinetic transformation of austempered AISI 6150 steel //j. Mater. Res. Technol. 2020. V. 9. P. 1357 - 1364.

Yang J., Wang T. S. Zhang B., Zhang F. C. Microstructure and mechanical properties of high-carbon Si - Al-rich steel by low-temperature austempering // Mater. Des. 2012. V. 35. P. 170 - 174.

Bilal M. M., Yaqoob K., Zahid M. H. et al. Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels //j. Mater. Res. Technol. 2019. V. 8. P. 5194 - 5200.

Kolbasnikov N. G., Sakharov M. S., Kuzin S. A., Teteryatnikov V. S. Stability of untransformed austenite in M/A phase of bainitic structure of low-carbon steel // Met. Sci. Heat Treat. 2021. V. 63. P. 63 - 69.

Kumar A., Singh S. B., Ray K. K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels // Mater. Sci. Eng. A. 2008. V. 474. P. 270 - 282.

Tomita Y., Okabayashi K. Mechanical properties of 0.40 pct C - Ni - Cr - Mo high strength steel having a mixed structure of martensite and bainite // Metall. Trans. A. 1985. V. 16. P. 73 - 82.

Putatunda S. K., Martis C., Boileau J. Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel // Mater. Sci. Eng. A. 2011. V. 528. P. 5053 - 5059.

Liu W., Jiang Y., Guo H. et al. Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature // Int. J. Miner. Metall. Mater. 2020. V. 27. P. 483 - 493.

Anastasiadi G. P., Kondrat'ev S. Yu., Malyshevskii V. A., Sil'nikov M. V. Importance of thermokinetic diagrams of transformation of supercooled austenite for development of heat treatment modes for critical steel parts // Met. Sci. Heat Treat. 2017. V. 58, Is. 11. P. 656 - 661.

Kondrat'ev S. Yu., Zotov O. G., Yaroslavskii G. Ya. et al. Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation // Problemy Prochnosti. 1983. V. 14B, Is. 3. P. 79 - 82.

Li Q., Zhang Y., Li W. et al. Improved mechanical properties of a quenched and partitioned medium-carbon bainitic steel by control of bainitic isothermal transformation //j. Mater. Eng. Perform. 2020. V. 29. P. 32 - 41.

Macchi J., Gaudez S., Geandier G. et al. Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy x-ray diffraction // Mater. Sci. Eng. A. 2021. V. 800. 140249.

Kilicli V., Erdogan M. The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure //j. Mater. Eng. Perform. 2010. V. 19. P. 142 - 149.

Mou Y., Li X., Li Z. et al. Elevation of impact toughness of medium-manganese trip-steel 0.2 % C - 6 % Mn - 3 % Al due to evolution of microstructure under heat treatment // Met. Sci. Heat Treat. 2021. V. 63. P. 26 - 33.

Niu G., Tang Q., Zurob H. S. et al. Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains // Mater. Sci. Eng. A. 2019. V. 759. P. 1 - 10.

Wen J., Li Q., Long Y. Effect of austempering on microstructure and mechanical properties of a GCr18Mo steel // Mater. Sci. Eng. A. 2006. V. 438 - 440. P. 251 - 253.

Abbaszadeh K., Saghafian H., Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel //j. Mater. Sci. Technol. 2012. V. 28. P. 336 - 342.

Saeidi N., Ekrami A.Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels // Mater. Sci. Eng. A. 2009. V. 523. P. 125 - 129.

Sousa T. G., Diniz S. B., Pinto A. L., Brandao L. P. Dislocation density by x-ray diffraction in α brass deformed by rolling and ECAE // Mater. Res. 2015. V. 18. P. 246 - 249.

Takebayashl S., Kunieda T., Yoshinaga N. et al.Comparison of the dislocation density in martensitic steels evaluated by some x-ray diffraction methods // ISIJ Int. 2010. V. 50. P. 875 - 882.

Hassanien A. S., Akl A. A. Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films // Phys. B Condens. Matter. 2015. V. 473. P. 11 - 19.

Vershinina T., Leont'eva-Smirnova M. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel // Mater. Charact. 2017. V. 125. P. 23 - 28.

Zhou T., Lu J., Hedstrцm P. Mechanical behavior of fresh and tempered martensite in a CrMoV-alloyed steel explained by microstructural evolution and strength modeling // Metall. Mater. Trans. A. 2020. V. 51. P. 5077 - 5087.

Kishor R., Sahu L., Dutta K., Mondal A. K. Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using x-ray diffraction profile analysis // Mater. Sci. Eng. A. 2014. V. 598. P. 299 - 303.

ASTM A. E975, Standard Practice for x-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1, Astm. 03. 2013. P. 1 - 7.

Adachi H., Miyajima Y., Sato M., Tsuji N. Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using in-situ x-ray diffraction technique // Mater. Trans. 2015. V. 56. P. 671 - 678.

Vander Voort G. F. Color metallography / in: Microsc. Microanal. ASM Handbook International. V. 9: Materials Park, Ohio, 2004. P. 493 - 512.

Morito S., Nishikawa J., Maki T. Dislocation density within lath martensite in Fe - C and Fe - Ni alloys // ISIJ Int. 2003. V. 43. P. 1475 - 1477.

Kehoe M., Kelly P. M. The role of carbon in the strength of ferrous martensite // Scr. Metall. 1970. V. 4. P. 473 - 476.

Norstrцm L. Е. The relation between microstructure and yield strength in tempered low-carbon lath martensite with 5 % nickel // Met. Sci. 1976. V. 10. P. 429 - 436.

Bhadeshia H. K. D. H. The bainite transformation: Unresolved issues // Mater. Sci. Eng. A. 1999. V. 273 - 275. P. 58 - 66.

Avishan B., Tavakolian M., Yazdani S. A two-step austempering of high performance steel with nanoscale microstructure // Mater. Sci. Eng. A. 2017. V. 693. P. 178 - 185.

Zhu J. G., Sun X., Barber G. C. Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel // Metals (Basel). 2020. V. 10. 236.




DOI: https://doi.org/10.30906/mitom.2022.9.29-38


© Издательский дом «Фолиум», 1998–2024