Влияние старения T6 и T6I4 на микроструктуру и свойства при сжатии алюминиевых композитов, армированных SiCw методом литья под давлением
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Bhoi N. K., Singh D. H., Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles — A review // J. Compos. Mater. 2020. V. 54. P. 813 – 833. DOI: 10.1177/0021998319865307
Kim C. S., Cho K., Manjili M. H. et al. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs) // J. Mater. Sci. 2017. V. 52. P. 13319 – 13349. DOI: 10.1007/s10853-017-1378-x
Samal P. V., Undavilli P. R., Meher A. et al. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties // J. Manuf. Process. 2020. V. 59. P. 131 – 152. DOI: 10.1016/j.jmapro.2020.09.010
Mondal D. P., Basu K., Narayan S. P. et al. Effect of processing history and aging temperature on age-hardening kinetics of 2014-Al alloy-SiC whisker composite // J. Mater. Sci. Lett. 2000. V. 19. P. 1189 – 1191. DOI: 10.1023/A:1006775613501
Abarghouie S., Reihani S. Aging behavior of a 2024 Al alloy – SiCp composite // Mater. Des. 2010. V. 31, Is. 5. P. 2368 – 2374. DOI: 10.1016/j.matdes.2009.11.063
Кондратьев С. Ю., Швецов О. В. Влияние высокотемпературных нагревов на структуру и свойства алюминиевых сплавов при изготовлении бурильных труб // МиТОМ. 2013. № 4(694). С. 24 – 30. (Kondrat’ev S. Yu., Shvetsov O. V. Effect of high-temperature heating on the structure and properties of aluminum alloys in the production of drill pipes // Met. Sci. Heat Treat. 2013. V. 55, No. 3 – 4. P. 191 – 196.) DOI: 10.1007/s11041-013-9604-x
Кондратьев С. Ю., Зотов О. Г., Швецов О. В. Структурная стабильность и изменение свойств алюминиевых сплавов Д16 и 1953 в процессе изготовления и эксплуатации бурильных труб // МиТОМ. 2013. № 10(700). С. 15 – 21. (Kondrat’ev S. Yu., Zotov O. G., Shvetsov O. V. Structural stability and variation of properties of aluminum alloys D16 and 1953 in production and operation of drill pipes // Met. Sci. Heat Treat. 2014. V. 55, No. 9 – 10. P. 526 – 532.) DOI: 10.1007/s11041-014-9665-5
Guo J., Yuan X. The aging behavior of SiC/Gr/6013Al composite in T4 and T6 treatments // Mater. Sci. Eng. A. 2009. V. 499, Is. 1. P. 212 – 214. DOI: 10.1016/j.msea.2007.11.142
Rong C., Iwabuchi A., Shimizu T. The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite // Wear. 2000. V. 238. P. 110 – 119. DOI: 10.1016/S0043-1648(99)00328-2
Flanagan S., Main J., Lynch P. et al. A mechanical evaluation of an overaged aluminum metal-matrix-composite (2009 Al/SiC/15p MMC) // Procedia Manuf. 2019. V. 34. P. 58 – 64. DOI: 10.1016/j.promfg.2019.06.117
Lumley R. N., Polmear I. J., Morton A. J. Heat treatment of age-hardenable aluminum alloys. Patent 7,025,839, USA. 2006.
Buha J., Lumley R. N., Crosky A. G. et al. Secondary precipitation in an Al – Mg – Si – Cu alloy // Acta Mater. 2007. V. 55. P. 3015 – 3024. DOI: 10.1016/j.actamat.2007.01.006
Marceau R. K. W., Sha G., Lumley R. N., Ringer S. P. Evolution of soliute clustering in Al – Cu – Mg alloys during secondary aging // Acta Mater. 201. V. 58. P. 1795 – 1805. DOI: 10.1016/j.actamat.2009.11.021
Li G. R., Cheng J. F., Wang H. M. et al. The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites // J. Alloys Compd. 2016. V. 695. P. 1930 – 1945. DOI: 10.1016/ j.jallcom. 2016.11.028
Zhang D. I., Zhang G. D., Li Z. Q. The current state and trend of metal matrix composites // Materials China. 2010. V. 29, Is. 4. P. 1 – 7.
Jayashree P. K., Gowri S., Sharma S. et al. The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints // J. Mater. Res. Technol. 2021. V. 12. P. 2325 – 2339. DOI: 10.1016/j.jmrt.2021.04.015
Wang Z., Li S., Wang M. et al. Effect of SiC whiskers on microstructure and mechanical properties of the MoSi2 – SiCw composites // Int. J. Refract. Met. Hard Mater. 2013. V. 41. P. 489 – 494. DOI: 10.1016/j.ijrmhm.2013.06.007
Fei W. D., Liu Q. Y., Yao C. K. Accelerating effect of whiskers on the ageing process of SiCw /Al composite // J. Mater. Sci. Lett. 1996. V. 15. P. 831 – 834. DOI: 10.1007/BF00592700
Wu Hu, Qi Zengqi, Cui Qingyan, Zhou Jian. Research on turning process of SiC particle reinforced aluminum matrix composite brake disc // Locomotive & Rolling Stock Technology. 2021. V. 06. P. 20 – 22. DOI: 10.14032/j.issn. 1007-6034. 2021.06.007
Youssef K. M., Scattergood R. O., Murty K. L., Koch C. C. Nanocrystalline Al – Mg alloy with uitra-high strength and good ductility // Scr. Mater. 2006. V. 54. P. 251 – 256. DOI: 10.1016/j.scriptamat.2005.09.028
Zhao Y. H., Liao X. Z., Jin Z. et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing // Acta Mater. 2004. V. 52, Is. 15. P. 4589 – 4599. DOI: 10.1016/ j.actamat.2004.06.017
Luo P., Mcdonald D. T., Xu W. et al. A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing // Scr. Mater. 2012. V. 66, Is. 10. P. 785 – 788. DOI: 10.1016/j.scriptamat.2012.02.008
DOI: https://doi.org/10.30906/mitom.2023.12.49-58
© Издательский дом «Фолиум», 1998–2024