Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Физические и механические свойства титановых сплавов и композитов, полученных порошковой металлургией: сравнительный анализ

Навин Кумар, Аджая Бхарти

Аннотация


Проведен обзор свойств существующих сплавов и композитов на основе Ti. Изучено влияние различных легирующих элементов, армирования и технологических параметров порошковой металлургии на физические и механические свойства сплавов и композитов на основе Ti. Рассмотрены режимы постобработки и предложены оптимальные варианты для уменьшения остаточной пористости композитов.

Ключевые слова


металломатричные композиты на основе титана; титановые сплавы; порошковая металлургия; компактирование; спекание

Полный текст:

PDF

Литература


Ahmed M., Savvakin D. G., Ivasishin O. M., Pereloma E. V. The effect of thermo-mechanical processing and ageing time on microstructure and mechanical properties of powder metallurgy near β titanium alloys //j. Alloys Comd. 2017. V. 714. P. 610 - 618.

Zhang H. R., Niu H. Z., Zang M. C. et al. Microstructures and mechanical behavior of a near α titanium alloy prepared by TiH2-based powder metallurgy // Mat. Sci. Eng. A. 2020. V. 770. Art. 138570.

Yoganandam K., Mohanavel V., Vairamuthu J., Kannadhasan V. Mechanical properties of titanium matrix composites fabricated via powder metallurgy method // Mater. Today: Proc. 2020. V. 33. P. 3243 - 3247.

Frykholm R., Brash B. Press and sintering of titanium // Key Eng. Mat. 2016. V. 704. V. P. 369 - 377.

Amigo A., Vicente A., Afonso C. R. M., Amigo V. Mechanical properties and the microstructure of β Ti-35Nb - 10Ta - xFe alloys obtained by powder // Metals. 2019. V. 9, Is. 1. P. 76.

Childerhouse T., Jackson M. Near net shape manufacture of titanium alloy components from powder and wire: A review of state-of-the-art process routes // Metals. 2019. V. 9, Is. 6. P. 689.

Guo R., Liu B., Xu R. et al. Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content // Mat. Sci. Eng. A. 2020. V. 777. Art. 138993.

Kumar N., Bharti A., Dixit M., Nigam A. Effect of powder metallurgy process and its parameters on the mechanical and electrical properties of copper-based materials: Literature review // Powder Metall. Met. Ceram. 2020. V. 59. P. 401 - 410.

Kumar N., Bharti A., Tripathi H. Investigation of microstructural and mechanical properties of magnesium matrix hybrid composite / In: Advances in Mechanical Engineering. Springer, Singapore, 2020. P. 661 - 669.

Kumar N., Bharti A., Saxena K. K. A re-analysis of effect of various process parameters on the mechanical properties of Mg based MMCs fabricated by powder metallurgy technique // Mater. Today: Proc. 2020. V. 26. P. 1953 - 1959.

Sokolov Yu. A., Pavlushin N. V., Kondrat'ev S. Yu. New additive technologies based on ion beams // Russ. Eng. Res. 2016. V. 36, Is. 12. P. 1012 - 1016.

Castillo S. M., Munoz S., Trueba P. et al. Influence of the compaction pressure and sintering temperature on the mechanical properties of porous titanium for biomedical applications // Metals. 2019. V. 9, Is. 12. P. 1249.

Rudskoy A. I., Kondrat'ev S. Yu., Sokolov Yu. A. New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process // Met. Sci. Heat Treat. 2016. V. 58, Is. 1 - 2. P. 27 - 32.

Jiang S., Huang L. J., An Q. et al. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration //j. Mech. Behav. Biomed. Mater. 2018. V. 81. P. 10 - 15.

Contreras A. R., Punset M., Calero J. A. et al. Powder metallurgy with space holder for porous titanium implants: A review //j. Mater. Sci. Technol. 2021. V. 76. P. 129 - 149.

Kondrat'ev S. Yu., Sokolov Yu. A. New approach to electron beam synthesis of powder and composite materials. Part 2. Practical results for alloy VT6 // Met. Sci. Heat Treat. 2016. V. 58, Is. 3 - 4. P. 165 - 169.

Yamanoglu R.Network distribution of molybdenum among pure titanium powders for enhanced wear properties // Met. Powder Rep. 2020. V. 76, Is. 1. P. 32 - 39.

Oh J. M., Heo K. H., Kim W. B. et al. Sintering properties of Ti6Al4V alloys prepared using Ti/TiH2 powders // Mater. Trans. 2013. V. 54. P. 119 - 121.

Mondi P. R., Mariappan R., Kumar C. R. et al. Effect of sintering temperature on microstructure and mechanical properties of powder metallurgy titanium composites // Int. J. Appl. Eng. Res. 2015. V. 10. P. 33389 - 33392.

Teja P. J., Shial S. R., Chaira D., Masanta M. Development and characterization of Ti - TiC composites by powder metallurgy route using recycled machined Ti chips // Mater. Today: Proc. 2020. V. 26. P. 3292 - 3296.

Reverte E., Tsipas S. A., Gordo E. Oxidation and corrosion behavior of new low-cost Ti - 7Fe - 3Al and Ti - 7Fe - 5Cr alloys from titanium hydride powders // Metals. 2020. V. 10, Is. 2. P. 254.

Carrullo J. C. Z., Borras A. D., Borras V. A. et al. Electrochemical corrosion behavior and mechanical properties of Ti - Ag biomedical alloys obtained by two powder metallurgy processing routes //j. Mech. Behav. Biomed. Mater. 2020. V. 112. Art. 104063.

Alshammari Y., Jia M., Yang F., Bolzoni L. The effect of α + β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route // Mat. Sci. Eng. A. 2020. V. 769. Art. 138496.

Zhang C., Yang F., Guo Z. et al. Oxygen scavenging, grain refinement and mechanical properties improvement in powder metallurgy titanium and titanium alloys with CaB6 // Powder Technol. 2018. V. 340. P. 362 - 369.

Romero C., Yang F., Wei C., Bolzoni L. Thermomechanical processing of cost-affordable powder metallurgy Ti - 5Fe alloys from the blended elemental approach: Microstructure, tensile deformation behavior, and failure // Metals. 2020. V. 10, Is. 11. P. 1405.

Guden M., Celik E., Hızal A. et al. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation //j. Biomed. Mater. Res. Part B. Appl. Biomater. 2008. V. 85, Is. 2. P. 547 - 555.

Yang Y. F., Qian M. Spark plasma sintering and hot pressing of titanium and titanium alloys / In: Titanium Powder Metallurgy. Elsevier, Butterworth-Heinemann, 2015. P. 219 - 235.

Rajadurai M., Annamalai A. R. Effect of various sintering methods on microstructures and mechanical properties of titanium and its alloy (Ti - Al - V - X): A review // Russ. J. Non-Ferr. Met+. 2017. V. 58. P. 434 - 448.

Yu C., Cao P., Jones M. I. Titanium powder sintering in a graphite furnace and mechanical properties of sintered parts // Metals. 2017. V. 7, Is. 3. P. 67.

Bolzoni L., Navas E. M. R., Gordo E. Quantifying the properties of low-cost powder metallurgy titanium alloys // Mat. Sci. Eng. A. 2017. V. 687. P. 47 - 53.

Lario J., Vicente A., Amigo V. Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications // Metals. 2021. V. 11, Is. 7. P. 1027.

Bolzoni L., Navas E. M. R., Zhang D. L., Gordo E. Modification of sintered titanium alloys by hot isostatic pressing // Key Eng. Mat. 2012. V. 520. P. 63 - 69.

Ivasishin O., Savvakin D. G., Froes F., Bondareva K. Synthesis of alloy Ti - 6Al - 4V with low residual porosity by a powder metallurgy method // Powder Metall. Met. Ceram. 2002. V. 41. P. 382 - 390.

Bolzoni L., Ruiz-Navas E. M., Gordo E. Evaluation of the mechanical properties of powder metallurgy Ti - 6Al - 7Nb alloy //j. Mech. Behav. Biomed. Mater. 2017. V. 67. P. 110 - 116.

Baldissera M. R., Rios P. R., Hein L. R. O., Sandim H. R. Z. Three-dimensional characterization of pores in Ti - 6Al - 4V alloy // Mater. Res. 2011. V. 14. P. 102 - 106.




DOI: https://doi.org/10.30906/mitom.2022.5.3-9


© Издательский дом «Фолиум», 1998–2025