Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Синтез и свойства композитов "восстановленный оксид графена/медь", полученных методом повторного прессования и спекания

Го Шенхуа, Чжэн Хайчжун, Шу Сяоюн, Ли Гуйфа, Ву Тингуан, Цай Жунхуй

Аннотация


Исследованы композиты с медной матрицей, упрочненной пластинами оксида графена, полученные методами повторного прессования и спекания. Определены твердость, относительная плотность, предел прочности, относительное удлинение и электропроводность композита, изготовленного по разным режимам прессования и спекания. Проведен анализ влияния режимов обработки на свойства композита с использованием метода планирования ортогонального эксперимента L16 (45). Предложены оптимальные параметры двойного прессования и спекания.

Ключевые слова


композит медь/оксид графена; прессование; спекание; планирование ортогонального эксперимента; оптимизация; copper/graphene oxide composite; pressing; sintering; design of orthogonal experiment; optimization

Полный текст:

PDF

Литература


Chen L. Y., Peng J. Y., Xu J. Q. et al. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing // Scr. Mater. 2013. V. 69. P. 634 - 637.

Tjong S. C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties // Adv. Eng. Mater. 2007. V. 9. P. 639 - 652.

Ferguson J. B., Sheykh-Jaberi F., Kim C. S. et al. On the strength and strain to failure in particle-reinforced magnesium metal matrix nanocomposites (Mg MMNCs) // Mater. Sci. Eng. A. 2012. V. 558. P. 193 - 204.

Kim C. S., Sohn Il., Nezafati M. et al. Prediction models for the yield strength of particle reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs) // J. Mater. Sci. 2013. V. 48. P. 4191 - 204.

Zheng R. X., Yang H., Liu T. et al. Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles // Mater. Des. 2014. V. 53. P. 512 - 518.

Prosviryakov A. S. SiC content effect on the properties of Cu - SiC composites produced by mechanical alloying // J. Alloys Compd. 2015. V. 632. P. 707 - 710.

Zhou D. S., Zeng W., Zhang D. L. A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity // J. Alloys Compd. 2016. V. 682. P. 590 - 593.

Bagheri Gh. A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles // J. Alloys Compd. 2016. V. 676. P. 120 - 126.

Tjong S. C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets // Mater. Sci. Eng. R. 2013. V. 74. P. 281 - 350.

Cho S., Kikuchi K., Kawasaki A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite // Acta Mater. 2012. V. 60. P. 726 - 736.

Kim K. T., Cha S. I., Hong S. H. et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites // Mater. Sci. Eng. A. 2006. V. 430. P. 27 - 33.

Xue Z. W., Wang L. D., Zhao P. T. et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites with molecular-level dispersion // Mater. Des. 2012. V. 34. P. 298 - 301.

Schedin F., Geim A. K., Morozov S. V. et al. Detection of individual gas molecules adsorbed on graphene // Nat. Mater. 2007. V. 6. P. 652 - 657.

Rafiee M. A., Rafiee J., Wang Z. et al. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content // ACS Nano. 2009. V. 12. P. 3884 - 3890.

Lee C., Wei X. D., Kysar J. W. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene // Science. 2008. V. 321. P. 385 - 388.

Kim W. J., Lee T. J., Han S. H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties // Carbon. 2014. V. 69. P. 55 - 65.

Zhang X. J., Wu K. F., He M. et al. Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze-drying and spark plasma sintering // Mater. Lett. 2016. V. 166. P. 67 - 70.

Li M. X., Xie J., Li Y. D. et al. Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties // Phys. Status Solidi A. 2015. V. 212. P. 2154 - 2161.

Chen F. Y., Ying J. M., Wang Y. F. et al. Effects of graphene content on the microstructure and properties of copper matrix composites // Carbon. 2016. V. 96. P. 836 - 842.

Jan D., Piotr O., Wojciech M. et al. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets // Mater. Sci. Eng. A. 2015. V. 628. P. 124 - 134.

Yue H. Y., Yao L. H., Gao X. et al. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites // J. Alloys Compd. 2017. V. 691. P. 755 - 762.

Zhang L., Pollak E., Wang W. C. et al. Electronic structure study of ordering and interfacial interaction in graphene/Cu composites // Carbon. 2012. V. 50. P. 5316 - 5322.

Rodriguez J. A., Gallardo J. M., Herrera E. J. Consolidation of mechanically alloyed aluminum by double cold-pressing and sintering // J. Mater. Process. Technol. 1996. V. 56. P. 254 - 262.

Thomas N. B., Debasis M. Characterization of x-ray irradiated graphene oxide coatings using x-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy // Powder Diffr. 2013. V. 28. P. 68 - 71.

Varol T., Canakci A. Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy // Met. Mater. Int. 2015. V. 21. P. 704 - 712.




DOI: https://doi.org/10.30906/mitom.2019.6.56-62


© Издательский дом «Фолиум», 1998–2024