Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние размера частиц исходного порошка на свойства покрытий WC - 12 % Co, полученных плазменным напылением на сталь Нитроник 50

Эрсан Мертгенч, Мухаммет Карабас, Юсуф Каялы

Аннотация


Исследовано влияние размера частиц порошка WC - 12 % Co на микроструктуру и механические свойства покрытий, полученных плазменным напылением на подложку из стали Нитроник 50. Проведен микроструктурный анализ покрытий методами сканирующей электронной микроскопии и рентгеновской дифракции, определены микротвердость и параметры изноостойкости. Показано, что покрытия, полученные из мелкого порошка, имеют бульшую толщину и в ~ 2 раза меньшую пористость, чем покрытия из крупного порошка. Однако при плазменном напылении крупный порошок подвергается меньшему обезуглероживанию. Покрытие из WC - 12 % Co повышает твердость поверхности и износостойкость стали Нитроник 50 в 6 - 7 раз.

Ключевые слова


плазменное распыление; WC - Co-покрытия; размер порошковых частиц; микроструктура; износостойкость

Полный текст:

PDF

Литература


Wood R. J. K. Tribology of thermal sprayed WC - Co coatings // International Journal of Refractory Metals and Hard Materials. 2010. V. 28, Is. 1. P. 82 - 94.

Mohanty R. M., Roy M. Thermal sprayed WC-Co coatings for tribological application / Materials and Surface Engineering, 1-st edition, Edited by J. Paulo Davim. Woodhead Publishing, 2012. Р. 121 - 162.

Karabaş M., Mertgenз E. Plazma pьskьrtme ile ьretilmiş beyaz ve gri Al2O3 kaplamaların mekanik цzellikleri // Journal of Materials and Mechatronics: A. 2020. V. 1, Is. 1. P. 22 - 28.

Pawlowski L. The science and engineering of thermal spray coatings, 2-nd edition. John Wiley & Sons, 2008. 626 p.

Heydarzadeh Sohi M., Ghadami F.Comparative tribological study of air plasma sprayed WC - 12 % Co coating versus conventional hard chromium electrodeposit // Tribology International. 2010. V. 43, Is. 5. P. 882 - 886.

Geng Z., Hou S., Shi G. et al. Tribological behaviour at various temperatures of WC - Co coatings prepared using different thermal spraying techniques // Tribology International. 2016. V. 104. P. 36 - 44.

Di Girolamo G., Pilloni L., Pulci G., Marra F. Tribological characterization of WC - Co plasma sprayed coatings // Journal of the American Ceramic Society. 2009. V. 92. P. 1118 - 1124.

Sбnchez E., Bannier E., Salvador M. D. et al. Microstructure and wear behavior of conventional and nanostructured plasma-sprayed WC - Co coatings // Journal of Thermal Spray Technology. 2010. V. 19. P. 964 - 974.

Chivavibul P., Watanabe M., Kuroda S. et al. Effect of powder characteristics on properties of warm-sprayed WC - Co coatings // Journal of Thermal Spray Technology. 2010. V. 19, Is. 1. P. 81 - 88.

Suresh Babu P., Rao D. S., Rao G. V. N., Sundararajan G. Effect of feedstock size and its distribution on the properties of detonation sprayed coatings // Journal of Thermal Spray Technology. 2007. V. 16, Is. 2. P. 281 - 290.

Al-Mutairi S., Hashmi M. S. J., Yilbas B. S., Stokes J. Microstructural characterization of HVOF / plasma thermal spray of micro/nano WC - 12 % Co powders // Surface and Coatings Technology. 2015. V. 264. P. 175 - 186.

Guo W.-G., Nemat-Nasser S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures // Mechanics of Materials. 2006. V. 38, Is. 11. P. 1090 - 1103.

Abed F. H., Ranganathan S. I., Serry M. A. Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures // Mechanics of Materials. 2014. V. 77. P. 142 - 157.

Mertgenз E. Examination of wear and rockwell-C adhesion properties of Nitronic 50 steel coated with pack boriding method // Sakarya University Journal of Science. 2020. P. 528 - 537.

Pulsford J., Kamnis S., Murray J. et al. Effect of particle and carbide grain sizes on a HVOAF WC - Co - Cr coating for the future application on internal surfaces: microstructure and wear // Journal of Thermal Spray Technology. 2018. V. 27, Is. 1. P. 207 - 219.

Picas J. A., Rupйrez E., Punset M., Forn A. Influence of HVOF spraying parameters on the corrosion resistance of WC - CoCr coatings in strong acidic environment // Surface and Coatings Technology. 2013. V. 225. P. 47 - 57.

Irons G. Higher velocity thermal spray processes produce better aircraft engine coatings // SAE Transactions. 1992. V. 101. P. 79 - 85.

Tillmann W., Khalil O., Abdulgader M. Porosity characterization and its effect on thermal properties of APS-sprayed alumina coatings // Coatings. 2019. V. 9. Art. 601.

Ctibor P., Kašparovб M., Bellin J. et al. Plasma spraying and characterization of tungsten carbide-cobalt coatings by the water-stabilized system WSP // Advances in Materials Science and Engineering. 2009. Art. ID 254848.

Li H., Khor K. A., Yu L. G., Cheang P. Microstructure modifications and phase transformation in plasma-sprayed WC - Co coatings following post-spray spark plasma sintering // Surface and Coatings Technology. 2005. V. 194, Is. 1. P. 96 - 102.

Vinayo M. E., Kassabji F., Guyonnet J., Fauchais P. Plasma sprayed WC - Co coatings: Influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness // Journal of Vacuum Science & Technology A. 1985. V. 3, Is. 6. P. 2483 - 2489.

Kim H. J., Kweon Y. G., Chang R. W. Wear and erosion behavior of plasma-sprayed WC - Co coatings // Journal of Thermal Spray Technology. 1994. V. 3, Is. 2. P. 169 - 178.

Afzal M., Ajmal M., Khan A. N. Wear behavior of WC - 12 % Co coatings produced by air plasma spraying at different standoff distances // Tribology Transactions. 2014. V. 57, Is. 1. P. 94 - 103.

Nouri A., Sola A. Powder morphology in thermal spraying // 2019. V. 1, Is. 3.

Baik K. H., Kim J. H., Seong B. G. Improvements in hardness and wear resistance of thermally sprayed WC - Co nanocomposite coatings // Materials Science and Engineering: A. 2007. V. 449 - 451. P. 846 - 849.

Liu R., Li D. Y. Modification of archard's equation by taking account of elastic/pseudoelastic properties of materials // Wear. 2001. V. 251, Is. 1. P. 956 - 964.




DOI: https://doi.org/10.30906/mitom.2022.1.55-61


© Издательский дом «Фолиум», 1998–2024