Влияние температуры отжига на микроструктуру и механические свойства сплава Ti - 6 % Al - 4 % V, полученного селективным лазерным плавлением
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Xiong Y.-Z., Gao R.-N., Zhang H. et al. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications //j. Mech. Behav. Biomed. 2020. V. 104. Art. 103673.
Arjunan A., Demetriou M., Baroutaji A., Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds //j. Mech. Behav. Biomed. 2020. V. 102. Art. 103517.
Galindo-Valdйs J. S., Cortйs-Hernбndez D. A., Ortiz-Cuellar J. C. et al. Laser deposition of bioactive coatings by in situ synthesis of pseudowollastonite on Ti6Al4V alloy // Opt. Laser Techn. 2020. V. 134. Art. 106586.
Hafiz Muhammad Hamza, Kashif Mairaj Deen, Waseem Haider. Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti6Al4V for dental applications // Mater. Sci. Engineering C. 2020. V. 113. Art. 110980.
Liu S., Shin Y. C. Additive manufacturing of Ti6Al4V alloy: a review // Mater. Des. 2019. V. 164. Art. 107552.
Thijs L., Verhaeghe F., Craeghs T. et al. A study of the microstructural evolution during selective laser melting of Ti - 6Al - 4V // Acta Mater. 2010. V. 58. P. 3303 - 3312.
Ginestra P., Ferraro R. M., Zohar-Hauber K. et al. Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: A comparative Study on the applied building direction // Materials. 2020. V. 13, Is. 23. Art. 5584.
Ge W., Han S., Na S. J., Fuh J. Y. H. Numerical modelling of surface morphology in selective laser melting // Comput. Mater. Sci. 2020. V. 186. Art. 110062.
Liu W., Chen C., Shuai S. et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on x-ray computed tomography // Mater. Sci. Eng. A. 2020. V. 797. Art. 139981.
Hussain M., Gupta P., Kumar P., Das A. K. Selective laser melting of single track on Ti - 6Al - 4V powder: experimentation and finite element analysis // Arab. J. Sci. Eng. 2020. V. 45, Is. 2. P. 1173 - 1180.
Miao X., Liu X., Lu P. et al. Influence of scanning strategy on the performances of GO-reinforced Ti6Al4V nanocomposites manufactured by SLM // Metals. 2020. V. 10, Is. 10. Art. 1379.
Wang S., Shi Z., Liu L. et al. The design of Ti6Al4V primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold // Mater. Des. 2020. V. 193, Is. 5. Art. 108830.
Bai L., Zhang J., Xiong Y. et al. Influence of unit cell pose on the mechanical properties of Ti6Al4V lattice structures manufactured by selective laser melting // Addit. Manuf. 2020. V. 34. Art. 101222.
Qian C., Xu H., Zhong Q. The influence of process parameters on corrosion behavior of Ti6Al4V alloy processed by selective laser melting //j. Laser Appl. 2020. V. 32, Is. 3. Art. 032010.
Xiao Z., Chen C., Zhu H. et al. Study of residual stress in selective laser melting of Ti6Al4V // Mater. Des. 2020. V. 193. Art. 108846.
Miao X., Wu M., Han J. et al. Effect of laser rescanning on the characteristics and residual stress of selective laser melted titanium Ti6Al4V alloy // Mater. 2020. V. 13, Is. 18. Art. 3940.
Rudskoy A. I., Belov I. M., Gordeev S. K. et al. Carbon nanostructured implants for substituting bone defects and process of their production // Met. Sci. Heat Treat. 2018. V. 60, No. 1 - 2.
Vrancken B., Thijs L., Kruth J.-P., Van Humbeeck J. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties //j. Alloys Compd. 2012. V. 541. P. 177 - 185.
Vilaro T., Colin C., Bartout J. D. As-fabricated and heat- treated microstructures of the Ti - 6Al - 4V alloy processed by Selective Laser Melting // Metall. Mater. Trans. A. 2011. V. 42, Is. 10. P. 3190 - 3199.
Yan X., Shi C., Liu T. et al. Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI // Surf. Coat. Technol. 2020. V. 396. Art. 125955.
Huang Q., Liu X., Yang X. et al. Specific heat treatment of selective laser melted Ti - 6Al - 4V for biomedical applications // Front. Mater. Sci. 2015. V. 9, Is. 4. P. 373 - 381.
Li J., Wei Z., Yang L. et al. Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting // Optik. 2019. V. 207. Art. 163760.
Kondrat'eva O. V., Kondrat'ev S. Yu., Shvetsov O. V. A study of modes of hardening heat treatment of titanium alloy VT23 // Met. Sci. Heat Treat. 2019. V. 60, No. 11 - 12. P. 715 - 721.
Zhanyong Z., Li L., Bai P.-K. et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via Selective Laser Melting // Materials. 2018. V. 11, Is. 8. Art. 1318.
Sallica-Leva E., Caram R., Jardini A. L., Fogagnolo J. B. Ductility improvement due to martensite α' decomposition in porous Ti - 6Al - 4V parts produced by selective laser melting for orthopedic implants //j. Mech. Behav. Biomed. 2016. V. 54. P. 149 - 158.
Chao Q., Hodgson P. D., Beladi H. Ultrafine grain formation in a Ti - 6Al - 4V alloy by thermomechanical processing of a martensitic microstructure // Metall. Mater. Trans. A. 2014. V. 45, Is. 5. P. 2659 - 2671.
DOI: https://doi.org/10.30906/mitom.2022.1.24-32
© Издательский дом «Фолиум», 1998–2024