Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Исследование структурных изменений в холоднокатаной аустенитной хромоникелевой стали с использованием дифракции синхротронного излучения и профильного анализа

К. И. Эмурлаев, А. Ю. Огнев, В. С. Ложкин

Аннотация


Рассмотрено влияние холодной прокатки на структуру и свойства аустенитной хромоникелевой стали 12Х18Н10Т. Проведен рентгеноструктурный анализ и измерена микротвердость стали после прокатки с различной степенью деформации. Рассмотрены изменения областей когерентного рассеяния и искажений кристаллической решетки в стали. Показано, что пластическая деформация стали приводит к механически-индуцированному превращению аустенита (γ) в мартенсит (α'). При этом мартенсит наследует дефекты, сформированные в процессе деформации исходной фазы - аустенита. Данные, полученные на основании результатов дифракционного анализа, согласуются с изменением микротвердости деформированной стали.

Ключевые слова


аустенит; деформация; дифракция; эволюция структуры

Полный текст:

PDF

Литература


Olson G. B., Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations // Journal of the Less Common Metals. 1972. V. 28. P. 107 - 118 (DOI: 10.1016/0022-5088(72)90173-7).

Patel J. R., Cohen M. Criterion for the action of applied stress in the martensitic transformation // Acta Metallurgica. 1953. V. 1, No. 5. P. 531 - 538 (DOI: 10.1016/0001- 6160(53)90083-2).

Tian Y., Borgenstam A., Hedstrцm P. Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe - Cr - Ni alloys // Journal of Alloys and Compounds. 2018. V. 766 P. 131 - 139 (DOI: 10.1016/j.jallcom.2018.06.326).

She M., Liu X., He G. The deformation-induced martensite and dynamic strain aging during cyclic deformation in AISI 321 // Materials Research Express. 2018. V. 6, No. 2. P.026530 (DOI: 10.1088/2053-1591/aad958).

Park M. C., Kim K. N., Shin G. S. et al. Effects of strain induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe - Cr - Ni - C alloys // Wear. 2012. V. 274 - 275. P. 28 - 33 (DOI: 10.1016/j.wear.2011.08.011).

Sun Y. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel // Tribology International. 2013. V. 57. P. 67 - 75 (DOI: 10.1016/j.triboint.2012.07.015).

Makarov A. V., Skorynina P. A., Yurovskikh A. S., Osintseva A. L. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel // The Physics of Metals and Metallography. 2017. V. 118, No. 12. P. 1225 - 1235 (DOI: 10.1134/S0031918X17120092).

Prasad B. K., Prasad S. V. Abrasion-induced microstructural changes during low stress abrasion of a plain carbon (0.5 % C) steel // Wear. 1991. V. 151, No. 1. P. 1 - 12 (DOI: 10.1016/0043-1648(91)90341-Q).

He B. B., Hu B., Yen H. W. et al. High dislocation density-induced large ductility in deformed and partitioned steels // Science. 2017. V. 357, No. 6355. P. 1029 - 1032 (DOI: 10.1126/science.aan0177).

Williamson G. K., Hall W. H. X-ray line broadening from filed aluminum and wolfram // Acta Metallurgica. 1953. V. 1. P. 22 - 31 (DOI: 10.1016/0001-6160(53)90006-6).

Warren B. E. X-ray studies of deformed metals // Progress in Metal Physics. 1959. V. 8. P. 147 - 202 (DOI: 10.1016/0502-8205(59)90015-2).

Ungбr T., Borbйly A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis // Applied Physics Letters. 1996. V. 69, No. 21. P. 3173 - 3175 (DOI: 10.1063/1.117951).

Krivoglaz M. A. X-ray and Neutron Diffraction in Nonideal Crystals, 1st ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. 466 p. (DOI: 10.1007/978-3-642-74291-0).

Caglioti G., Paoletti A., Ricci F. P. Choice of collimators for a crystal spectrometer for neutron diffraction // Nuclear Instruments. 1958. V. 3, No. 4. P. 223 - 228 (DOI: 10.1016/0369-643X(58)90029-X).

Stokes A. R. A numerical fourier-analysis method for the correction of widths and shapes of lines on x-ray powder photographs // Proceedings of the Physical Society. 1948. V. 61, No. 4. P. 382 - 391 (DOI: 10.1088/0959-5309/61/4/311).

Dickson M. J. The significance of texture parameters in phase analysis by x-ray diffraction // Journal of Applied Crystallography. 1969. V. 2, No. 4. P. 176 - 180 (DOI: 10.1107/S0021889869006881).

Forouzanmehr N., Nili-Ahmadabadi M., Bцnisch M. The analysis of severely deformed pure Fe structure aided by x-ray diffraction profile // The Physics of Metals and Metallography. 2016. V. 117, No. 6. P. 624 - 633 (DOI: 10.1134/S0031918X16060077).

Simm T. H., Withers P. J., Quinta da Fonseca J. An evaluation of diffraction peak profile analysis (DPPA) methods to study plastically deformed metals // Materials and Design. 2016. V. 111. P. 331 - 343 (DOI: 10.1016/j.matdes.2016.08.09)1.

Ungбr T., Gubicza J., Ribбrik G., Borbйly A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals // Journal of Applied Crystallography. 2001. V. 34, No. 3. P. 298 - 310 (DOI: 10.1107/S0021889801003715).




DOI: https://doi.org/10.30906/mitom.2021.12.17-21


© Издательский дом «Фолиум», 1998–2024