Исследование механизма образования сложной окалины на жаропрочной стали 25Cr18Ni9Si2
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Kondrat'ev S. Yu., Petrov S. N., Anastasiadi G. P., Tsemenko A. V. Structural features of cast refractory alloy HP40NbTi high-temperature oxidation. Part I. Evolution of microstructure and phase composition // Met. Sci. Heat Treat. 2020. V. 62, Is. 1 - 2. P. 35 - 45.
Kondrat'ev S. Yu., Petrov S. N., Anastasiadi G. P., Tsemenko A. V. Structural features of cast refractory alloy NbTi high-temperature oxidation. Part 2. Microstructure and phase composition evolution // Met. Sci. Heat Treat. 2020. V. 62, Is. 1 - 2. P. 46 - 54.
Bian L.-Z., Chen Z.-Y., Wang L.-J. et al. Oxidation resistance, thermal expansion and area specific resistance of Fe - Cr alloy interconnector for solid oxide fuel cell // J. Iron Steel Res. Int. 2017. V. 24. P. 77 - 83.
Cui C. Y., Xia C. D., Cui X. G. et al. Novel morphologies and growth mechanism of Cr2O3 oxide formed on stainless steel surface via Nd : YAG pulsed laser oxidation // J. Alloys Compd. 2015. V. 635. P. 101 - 106.
Chen H., Wang H., Sun Q. et al. Oxidation behavior of Fe - 20Cr - 25Ni - Nb austenitic stainless steel in high-temperature environment with small amount of water vapor // Corros. Sci. 2018. V. 145. P. 90 - 99.
Xu J.-X., Luo X.-T., Li C.-X. et al. Formation of Cr2O3 diffusion barrier between Cr-contained stainless steel and sold-sprayed Ni coatings at high temperature // J. Therm. Spray Techn., 2016. V. 25. P. 526 - 534.
Takeda M., Kushida H., Onishi T. et al. Influence of oxidation temperature and Cr content on the adhesion and microstructure of scale on low Cr steels // Oxid. Met. 2010. V. 73. P. 1 - 13.
An L. C., Cao J., Zhang T., Yang Y. T. Cr diffusion and continuous repairing behavior during high-temperature oxidation of duplex stainless steel // Mater. Corros. 2017. V. 68. P. 1116 - 1122.
Matsubara S., Yamaguchi T., Masuyama F. Effect of Cr content and microstructure on high temperature oxidation behavior of high nitrogen heat-resistant ferritic steels // ISIJ Int. 2018. V. 58. P. 2102 - 2109.
Nguyen T. D., Zhang J., Young D. J. Water vapor effects on corrosion of Fe - Cr and Fe - Cr - Ni alloys containing silicon in CO2 gas at 818 °C // Oxid. Met. 2015. V. 83. P. 575 - 594.
Mao H.-H., Qi X., Cao J. et al. Effect of Si on high temperature oxidation of 30Cr13 stainless steel // J. Iron Steel Res. Int. 2017. V. 24. P. 561 - 568.
Liu X.-J., He Y.-Q., Cao G.-M. et al. Effect of Si content and temperature on oxidation resistance of Fe - Si alloys // J. Iron Steel Res. Int. 2015. V. 22. P. 238 - 244.
Pisarevskii L. A., Filippov G. A., Lipatov A. A. Effect of N, Mo, and Si on local corrosion resistance of unstabilized Cr - Ni and Cr - Mn - Ni austenitic steels // Metallurgist 2016. V. 60. P. 822 - 831.
Ko J.-H., Lee D.-B. Oxidation of Ni films electroplated on steel // Met. Mater. Int. 2005. V. 11. P. 85 - 88.
Liu Y.-Z., Yang C.-F., Chai F. et al. High temperature oxidation resistance of 9Ni steel // J. Iron Steel Res. Int. 2014. V. 21. P. 956 - 963.
Li D.-L., Fu G.-Q., Zhu M.-Y. et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere // Int. J. Miner. Metall. Mater. 2018. V. 25. P. 325 - 338.
Jonsson T., Larsson H., Karlsson S. et al. High-temperature oxidation of FeCr(Ni) alloys: the behaviour after breakaway // Oxid. Met. 2017. V. 87. P. 333 - 341.
Yuan Q., Xu G., Liang W.-C. et al. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating // Int. J. Miner. Metall. Mater. 2018. V. 25. P. 164 - 172.
Dong H., Wang P., Li D., Li Y. Effect of pre-deformation on the oxidation resistance of a high Si ferritic/martensitic steel in oxygen-saturated stagnant lead-bismuth eutectic at 550 °C // Corros. Sci. 2017. V. 118. P. 129 - 142.
Yuan Q., Xu G., Liang W. et al. Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation // Corros. Rev. 2018. V. 36. P. 385 - 393.
Zou D., Zhou Y., Zhang X. et al. High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel // Mater. Charact. 2018. V. 136. P. 435 - 443.
Ren J., Yu L., Liu Y. et al. Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 °C // Appl. Surf. Sci. 2019. V. 480. P. 969 - 978.
Refait P., Jeannin M., Urios T. et al. Corrosion of low alloy steel in stagnant artificial or stirred natural seawater: The role of Al and Cr // Mater. Corros. 2019. V. 70. P. 985 - 995.
Mahboubi S., Jiao Y., Cook W. et al. Stability of chromia (Cr2O3)-based scales formed during corrosion of austenitic Fe - Cr - Ni alloys in flowing oxygenated supercritical water // Corros. 2016. V. 72. P. 1170 - 1180.
Smola G., Gawel R., Kyziol K. et al. Influence of Nickel on the oxidation resistance at high temperatures of thin chromium coatings // Oxid. Met. 2019. V. 91. P. 625 - 640.
Matsubara S., Yamaguchi T., Masuyama F. High temperature oxidation behavior of high nitrogen 9 % Cr steels // ISIJ Int. 2018. V. 58. P. 2095 - 2101.
Kondrat'ev S. Yu., Anastasiadi G. P., Ptashnik A. V., Petrov S. N. The mechanisms of scale and subsurface diffusion zone formation of heat-resistant NbTi alloy at long-term high-temperature exposure // Materialia. 2019. V. 7. 100427.
Kondrat'ev S. Y., Anastasiadi G. P., Ptashnik A. V., Petrov S. N. Kinetics of the high-temperature oxidation of heat-resistant statically and centrifugally cast NbTi alloys // Oxid. Met. 2019. V. 91, Is. 1 - 2. P. 33 - 53.
Anastasiadi G. P., Kondrat'ev S. Yu., Rudskoy A. I. Selective high-temperature oxidation of phases in a cast refractory alloy of the 25Cr - 35Ni - Si - Nb - C System // Met. Sci. Heat Treat. 2014. V. 56. P. 403 - 408.
Kondrat'ev S. Yu., Anastasiadi G. P., Ptashnik A. V., Petrov S. N. Evolution of the microstructure and phase composition of a subsurface of cast HP-type alloy during a long-term high-temperature aging // Mater. Charact. 2019. V. 150. P. 166 - 173.
Kondrat'ev S. Yu., Anastasiadi G. P., Rudskoy A. I. Nanostructure mechanism of formation of oxide film in heat-resistant Fe - 25Cr - 35Ni superalloys // Met. Sci. Heat Treat. 2015. V. 56. P. 531 - 536.
Krishtal M. M., Ivashin P. V., Polunin A. V. et al. Effect of SiO2 nanoparticles and soluble silicate o the composition and properties of oxide layers formed by microarc oxidizing on magnesium Mg96 // Met. Sci. Heat Treat. 2019. V. 61. P. 149 - 156.
Zhang J. Physical chemistry of metallurgy [in Chinese]. Beijing, China: Metallurgical Industry Press, 2004. P. 332 - 334.
Ohya Y., Ishii Y., Ban T. Reaction of molten aluminum with MgO and formation of MgAl2O4 spinel at 1000 °C // Mater. Trans. 2020. V. 61. P. 339 - 345.
Jin C., Liu J., Zheng D. et al. Effect of cation substitution on the magnetic and magnetotransport properties of epitaxial Fe3-xVxO4 films // Appl. Surf. Sci., 2015. V. 332. P. 70 - 75.
Huang W., Chen M., Shen X. et al. Phase diagrams and thermodynamic properties of the FeO - SiO2 - V2O3 systems // Steel Res. Int. 2017. V. 88, Is. 6. 1600324.
Cai Q., Wang J.-G., Wang Y., Mei D. First-principles thermodynamics study of spinel MgAl2O4 surface stability // J. Phys. Chem. C. 2016. V. 120. P. 19087 - 19096.
Duan N., Gao M., Hua B. et al. Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrodes for solid oxide cells // J. Mater. Chem. A. 2020. V. 8. P. 3988 - 3998.
Li H. Sun S., Xi S. Metal-oxygen hybridization determined activity in spinel-based oxygen evolution catalysts: a case study of ZnFe2-xCrxO4 // Chem. Mater. 2018. V. 30. P. 6839 - 6848.
Wang Y., Jia A.-P., Luo M.-F. Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation // Appl. Catal. B-Environ. 2015. V. 165. P. 477 - 486.
DOI: https://doi.org/10.30906/mitom.2021.10.23-29
© Издательский дом «Фолиум», 1998–2024