Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние отжига на дисперсионное упрочнение в процессе ползучести аустенитной стали с 4 % Al

Лу Бини, Цзоу Бофэн, Гао Цючжи, Лю Цзыюнь, Ма Циншуан, Чзан Хуэйцзе, Хао Айминь, Чзан Хайлянь

Аннотация


Исследована аустенитная сталь AFA, легированная 4 % Al, в состоянии поставки и после отжига при 1050 и 1230° C. Определен химический состав стали, проведен микроструктурный анализ, изучена морфология вторичных фаз с использованием методов сканирующей электронной микроскопии и дифракционного анализа. Получены кривые высокотемпературной ползучести. Проанализированы изменения свойств стали после испытаний на ползучесть. Показано положительное влияние отжига на сопротивление ползучести стали AFA. Установлено, что после отжига при 1230° C сталь имеет лучшие характеристики высокотемпературной ползучести: установившаяся скорость ползучести равна 1,61 · 10-6 с-1, а энергия активации 608,2 кДж/моль.

Ключевые слова


аустенитная сталь, легированная алюминием; высокотемпературная ползучесть; отжиг; дисперсионное упрочнение

Полный текст:

PDF

Литература


Xiao B., Xu L. Y., Zhao L. et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep // Mater. Sci. Eng. A. 2017. V. 707. P. 466 - 477.

Gao Q. Z., Zhang Y. N., Zhang H. L. et al. Precipitates and particles coarsening of 9Cr - 1.7W - 0.4Mo - Co ferritic heat-resistant steel after isothermal aging // Sci. Rep. 2017. V. 7. Article 5859.

Peterson S. F., Mataya M. C., Matlock D. K. The formability of austenitic stainless steels // JOM-J. Miner. Met. Mater. Soc. 1997. V. 49, Is. 9. P. 54 - 58.

Li X., Shi L., Liu Y., Gan K., Liu C. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching // Mater. Sci. Eng. A. 2020. V. 772. Article 138683.

Tan Z., Yang L., Wang X. et al. Evolution of TCP phase during long term thermal exposure in several Re-containing single crystal superalloys // Acta Metall. Sin. (Engl. Lett.). 2020. V. 33, Is. 5. P. 731 - 740.

Gao Q. Z., Jiang Y. G., Liu Z. Y. et al. Effects of alloying elements on microstructure and mechanical properties of Co - Ni - Al - Ti superalloy // Mater. Sci. Eng. A. 2020. V. 779. Article 139139.

Hu X. A., Zhao G. L., Jiang Y. et al. Experimental investigation on the LCF behavior affected by manufacturing defects and creep damage of one selective laser melting nickel-based superalloy at 815 degrees C // Acta Mech. Sin. 2020. V. 33, Is. 4. P. 514 - 527.

Gao Q., Liu Z., Li H. et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling // J. Mater. Sci. Technol. 2021. V. 68. P. 91 - 102.

Gao Q. Z., Dong X., Li C. et al. Microstructure and oxidation properties of 9Cr - 1.7W - 0.4Mo - Co ferritic steel after isothermal aging // J. Alloys Compd. 2015. V. 651. P. 537 - 543.

Vujic S., Sandstrom R., Sommitsch C. Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel // Mater. High Temp. 2015. V. 32, Is. 6. P. 607 - 618.

Chen J., Liu H. Q., Lin G. Y. et al. Interfacial reactions between ZrSnNb and FeCrAl alloy during diffusion bonding, hot-rolling and annealing // J. Alloys Compd. 2020. V. 823. Article 153736.

Yamamoto Y., Brady M. P., Lu Z. P. et al. Creep-resistant, Al2O3-forming austenitic stainless steels // Science. 2007. V. 316, Is. 5823. P. 433 - 436.

Moon J., Lee T. H., Heo Y. U. et al. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel // Mater. Sci. Eng. A. 2015. V. 645. P. 72 - 81.

Trotter G., Baker I. The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe - 20Cr - 30Ni - 2Nb - 5Al // Mater. Sci. Eng. A. 2015. V. 627. P. 270 - 276.

Zhao B., Chang K., Fan J. et al. Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel // Mater. Lett. 2016. V. 176. P. 83 - 86.

Vidilli A. L., Otani L. B., Wolf W. et al. Design of a FeMnAlC steel with TWIP effect and evaluation of its tensile and fatigue properties // J. Alloys Compd. 2020. V. 831. Article 154806.

Wang H. C., Shuro I., Umemoto M. et al. Annealing behavior of nano-crystalline austenitic SUS316L produced by HPT // Mater. Sci. Eng. A. 2012. V. 556. P. 906 - 910.

Srivastava V., Williams J. P., McNee K. R. et al. Low stress creep behaviour of 7075 high strength aluminium alloy // Mater. Sci. Eng. A. 2004. V. 382, Is. 1 - 2. P. 50 - 56.

Choi C. J., Park J. K., Park W. W. Creep deformation behavior of mechanically alloyed Al - 10Ti - 2Si alloy // Scripta Mater. 1997. V. 36, Is. 7. P. 769 - 774.

Totemeier T. C., Lillo T. M. Effect of orientation on the tensile and creep properties of coarse-grained INCONEL alloy MA754 // Metall. Mater. Trans. A. 2005. V. 36A, Is. 3A. P. 785 - 795.

Liu Z. G., Li P. J., Xiong L. T. et al. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy // Mater. Sci. Eng. A. 2017. V. 680. P. 259 - 269.

Dehghan-Manshadi A., Barnett M., Hodgson P. D. Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization // Metall. Mater. Trans. A. 2008. V. 39A, Is. 6. P. 1359 - 1370.

Jang M. H., Moon J., Kang J. Y. et al. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels // Mater. Sci. Eng. A. 2015. V. 647. P. 163 - 169.

Frechard S., Redjaimia A., Lach E., Lichtenberger A. Dynamical behaviour and microstructural evolution of a nitrogen- alloyed austenitic stainless steel // Mater. Sci. Eng. A. 2008. V. 480, Is. 1 - 2. P. 89 - 95.

Gao Q. Z., Zhang H. L., Li H. J. et al. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior // J. Mater. Sci. 2019. V. 54, Is. 11. P. 8760 - 8777.

Mohamadizadeh A., Zarei-Hanzaki A., Abedi H. R. Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters // Mech. Mater. 2016. V. 95. P. 60 - 70.

Reyes-Calderon F., Mejia I., Cabrera J. M. Hot deformation activation energy (Q(HW)) of austenitic Fe - 22Mn - 1.5Al - 1.5Si - 0.4C TWIP steels microalloyed with Nb, V, and Ti // Mater. Sci. Eng. A. 2013. V. 562. P. 46 - 52.

Liu W. H., Wu Y., He J. Y. et al. Grain growth and the Hall- Petch relationship in a high-entropy FeCrNiCoMn alloy // Scripta Mater. 2013. V. 68, Is. 7. P. 526 - 529.

Kimura A., Kasada R., Sugano R. et al. Annealing behavior of irradiation hardening and microstructure in helium-implanted reduced activation martensitic steel // J. Nucl. Mater. 2000. V. 283. P. 827 - 831.

Sharma S. K., Jang C., Kang K. J. Effect of thermo-mechanical processing on microstructure and creep properties of the foils of alloy 617 // J. Nucl. Mater. 2009. V. 389, Is. 3. P. 420 - 426.

Dudova N., Plotnikova A., Molodov D. et al. Structural changes of tempered martensitic 9 % Cr - 2 % W - 3 % Co steel during creep at 650 °C // Mater. Sci. Eng. A. 2012. V. 534. P. 632 - 639.

Jang M. H., Kang J. Y., Jang J. H. et al. Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain // Mater. Charact. 2018. V. 137. P. 1 - 8.

Dimmler G., Weinert P., Cerjak H. Analysis of steady state creep behaviour of 9 - 12 % chromium ferritic-martensitic steels // Mater. Sci. Technol. 2013. V. 20, Is. 12. P. 1525 - 1530.

Jiang Y. J., Gao Q. Z., Zhang H. L. et al. The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel // Mater. Sci. Eng. A. 2019. V. 748. P. 161 - 172.

Fedorova I., Belyakov A., Kozlov P. et al. Laves-phase precipitates in a low-carbon 9 % Cr martensitic steel during aging and creep at 923 K // Mater. Sci. Eng. A. 2014. V. 615. P. 153 - 163.

Kadoya Y., Dyson B. E., McLean M. Microstructural stability during creep of Mo- or W-bearing 12Cr steels // Metall. Mater. Trans. A. 2002. V. 33, Is. 8. P. 2549 - 2557.

Maruyama K., Sawada K., Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel // ISIJ Int. 2001. V. 41, Is. 6. P. 641 - 653.

Williamson G. K., Smallman R. E. III. Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum // Philos. Mag. 1956. V. 1, Is. 1. P. 34 - 46.

Adhikary M., Chakraborty A., Das A. et al. Influence of annealing texture on dynamic tensile deformation characteristics of Dual phase steel // Mater. Sci. Eng. A. 2018. V. 736. P. 209 - 218.

Brady M. P., Magee J., Yamamoto Y. et al. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance // Mater. Sci. Eng. A. 2014. V. 590. P. 101 - 115.

Gao Q. Z., Qu F., Zhang H. L., Huo Q. Austenite grain growth in alumina-forming austenitic steel // J. Mater. Res. 2016. V. 31, Is. 12. P. 1732 - 1740.

Hayakawa H., Nakashima S., Kusumoto J. et al. Creep deformation characterization of heat resistant steel by stress change test // Int. J. Press. Vessels Pip. 2009. V. 86, Is. 9. P. 556 - 562.

Liu Z. Y., Gao Q. Z., Zhang H. L. et al. EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing // Mater. Sci. Eng. A. 2019. V. 755. P. 106 - 115.




DOI: https://doi.org/10.30906/mitom.2021.9.37-45


© Издательский дом «Фолиум», 1998–2022