Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Исследование параметров процессов азотирования. Часть I

Е. Михальский, Э. Воловец-Корецкая

Аннотация


Описаны материалы и методы исследования параметров азотирования, а также азотирующие атмосферы, получаемые в разных условиях разбавления, при разных давлениях неразбавленного аммиака и реакции, происходящие в них. Предложены расчетные соотношения, характеризующие зависимость азотного потенциала от характеристик среды, а также влияние степени диссоциации аммиака на количество азота в атмосфере.

Ключевые слова


газовое азотирование; азотирование при низком давлении; разбавление аммиака; азотный потенциал; скорость диссоциации; gas nitriding; low-pressure nitriding; dilution of ammonia; nitrogen potential; rate of dissociation

Полный текст:

PDF

Литература


Somers M. A. J., Mittemeijer E. J. Layer, growth, kinetics on gaseous nitriding of pure iron: evolution of diffusion coefficients for nitrogen in iron nitrides // Metall. Mater. Trans. A. 1995. V. 26. P. 57 - 74.

Małdziński L. Thermodynamic, kinetic and technological aspects of producing nitrided layers on iron and steel in processes of gas nitriding. Poznan University of Technology. Poznan. 2002.

Jordan D., Antes H., Osterman V., Jones T. Vacuum nitriding of 4140 steel // Heat Treat. Prog. 2008. V. 3 - 4. P. 33 - 38.

Michalski J. Using nitrogen availability as a nitriding process parameter // Ind. Heat. 2012. V. 10. P. 63 - 68.

Michalski J. Characteristics and calculations atmospheres for controlled gas nitriding of steel, Institute of Precision Mechanics. Warszaw, 2010.

Lehrer E. Ьber das Eisen-Wasserstoff-Amoniak-Gleichge- wicht // Z. fьr Elektrochem. 1930. V. 36. P. 383 - 392.

Mittemeijer E. J., Somers M. A. J. Thermodynamics, kinetics, and process control of nitriding // Surf. Eng. 1997. V. 13. P. 483 - 497.

Smirnov A. V., Kuleshov Y. S. Calculations for nitriding with diluted ammonia // Met. Sci. Heat Treat. 1966. V. 8. P. 395 - 403 (doi: 10.1007/BF00649318).

Grabke H. J. Reaktionen von Ammoniak, Stickstoff und Wasserstoff an der Oberflдche von Eisen // Berichte Bunsenges fьr Phys. Chem. 1968. V. 4. P. 533 - 548.

Kardonina N. I., Yurovskikh A. S., Kolpakov A. S. Transformations in the Fe - N system // Met. Sci. and Heat Treat. 2010. V. 52. P. 457 - 467.

Arabczyk W., Zamlynny J. Study of the ammonia decomposition over iron catalysts // Catal. Lett. 1999. V. 60. P. 167 - 171.

Wrуbel R., Arabczyk W. Solid-gas reaction with adsorption as the rate limiting step // J. Phys. Chem. A. 2006. V. 110. P. 9219 - 24 (doi: 10.1021/jp061947b).

Kunze J. Nitrogen and Carbon in Iron and Steels-Thermodynamics. Berlin: Akademie Verlag, 1990.

Kooi B., Somers M. A. J., Mittemeijer E. J. An evaluation of the FeN phase diagram considering long range order of N atoms, γ'-Fe4N(1-x) and ε-Fe2N(1-z) // Metall. Mater. Trans. A. 1996. V. 27. P. 1064 - 1071.

Jennings J. R. Catalytic Ammonia Synthesis Fundamentals and Practice. New York: Plenum Press, 1991.

Aika K., Christiansen L. J., Dybkjaer I. et al. Ammonia Catalysis and Manufacture. Berlin/Heidelberg: Springer Verlag. 1995.

Jack K. H. The occurrence and the crystal structure of α-iron nitride; A new type of interstitial alloy formed during the tempering of nitrogen-martensite // Proc. R. Soc. Lond. 1951. V. 208, P. 216 - 224.

Jack K. H. Iron-nitrogen system: The crystal structures of e-phase iron nitrides // Acta Crystallogr. 1952. V. 5. P. 404 - 411.

Małdziński L., Tacikowski J. Concept of an economical and ecological process of gas nitriding of steel // HTM Hartereitechnische Mitteilungen. 2006. V. 61. P. 296 - 302 (doi: 10.3139/105.100399).

Anichkina N. L., Bogolyubov V. S., Boiko V. V. et al. Comparison of methods of gas, ionic, and vacuum nitriding // Met. Sci. and Heat Treat. 1989. V. 31. P. 170 - 174.

Yang M., Sisson R. D. Alloy effects on the gas nitriding process // J. Mater. Eng. Perform. 2014. V. 23. P. 4181 - 4186 (doi: 10.1007/s11665-014-1187-1).

Barrallier L. Classical nitriding of heat treatable steel // Thermochem. Surf. Eng. Steels. 2015. Elsevier. P. 393 - 412 (doi: 10.1533/9780857096524.3.393).

Cho K. T., Song K., Oh S. H. et al. Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding // Surf. Coat. Technol. 2014. V. 251. P. 115 - 121 (doi: 10.1016/j.surfcoat.2014.04.011).

Manova D., Hirsch D., Gerlach J. W. et al. In situ investigation of phase formation during low energy ion nitriding of Ni80Cr20 alloy // Surf. Coat. Technol. 2014. V. 259. P. 434 - 441 (doi: 10.1016/j.surfcoat.2014.10.054).

Rosales I., Martinez H., Guardian R. Mechanical performance of thermally post-treated ion-nitrided steels // Appl. Surf. Sci. 2016. V. 371. P. 576 - 582 (doi: 10.1016/j.apsusc. 2016.03.048).

Hoche D., Kaspar J., Schaaf P. Laser nitriding and carburization of materials / Eds.: J. R. Lawrence, C. Dowding, D. Waugh, J. B. Griffiths. Laser Surf. Eng. Elsevier, 2015. P. 33 - 58 (doi: 10.1016/B978-1-78242-074-3.00002-7).

Kula P., Wolowiec E., Pietrasik R. et al. Non-steady state approach to the vacuum nitriding for tools // Vacuum. 2013. V. 88. P. 1 - 7 (doi: 10.1016/j.vacuum.2012.08.001).

Soshkin S. M., Lakhtin Y. M., Kogan Y. D. Structure of the diffusion layer with vacuum nitriding // Met. Sci. and Heat Treat. 1984. V. 26. P. 521 - 523.

Lakhtin Y. M., Kogan Y. D., Soshkin S. M. Nitriding of steels in vacuum // Met. Sci. and Heat Treat. 1980. V. 22. P. 635 - 638.

Perez M., Belzunce F. J. A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies // Surf. Coat. Technol. 2016. V. 305. P. 146 - 157 (doi: 10.1016/j. surfcoat.2016.08.003).

Zhou Z., Dai M., Shen Z., Hu J. Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis // J. Alloys Compd. 2015. V. 623. P. 261 - 265 (doi: 10.1016/j.jallcom. 2014.10.146).

Lakhtin Y. M., Kogan Y. D. Controlled nitriding processes // Met. Sci. and Heat Treat. 1978. V. 20. P. 667 - 671 (doi: 10.1007/BF00780806).

Tacikowski J., Zyśk J. Method of Gas Nitriding [Sposуb Azotowania Gazowego]. PL 85924, 1977.

Kulka M., Panfil D., Michalski J., Wach P. The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel // Opt. Laser Technol. 2016. V. 82. P. 203 - 219 (doi: 10.1016/j.optlastec.2016.02.021).

Panfil D., Kulka M., Wach P. et al. Nanomechanicalproperties of iron nitrides produced on 42CrMo4 steel by controlled gas nitriding and laser heat treatment // J. Alloys Compd. 2017. V. 706. P. 63 - 75 (doi: 10.1016/j.jallcom.2017.02.220).

Małdziński L., Tacikowski J. ZeroFlow gas nitriding of steels / Eds.: Mittemeijer, M. A. J. Somers. Thermochem. Surf. Eng. Steels, Elsevier. 2015. P. 459 - 483 (doi: 10.1533/ 9780857096524.3.459).

Bazel M., Korecki M., Małdziński L. et al. Industrial experiences with controlled nitriding using a ZeroFlow method // Heat Treat. Prog. 2009. V. 7 - 8. P. 19 - 22.

Kula P., Pietrasik R., Stańczyk-Wołowiec E. Method of Nitriding Tools Made of Iron Alloys [Sposуb Azotowania Narzędzi Wykonanych ze Stopуw Żelaza] / PL 219125, 2014.

Zinchenko V. M., Syropyatov V. Y., Barelko V. V., Bykov L. A. Gas nitriding in catalytically prepared ammonia media // Met. Sci. Heat Treat. 1997. V. 39. P. 280 - 284.

Krylov W. S., Gуralczyk E. H., Szerbiednickij G. W. Features of nitriding of iron and steel at an ammonia pressure below atmospheric pressure // Metałły. 1977. V. 4. P. 175 - 178.

Wołowiec E., Kula P., Januszewicz B., Korecki M. Mathematical modelling the low-pressure nitriding process // Appl. Mech. Mater. 2013. V. 421. P. 377 - 383.

Lightfoot B. J., Jack K. H. Kinetics of nitriding with and without white layer formation / in: Proc. Heat Treat.'73, The Metals Society, London, 1973. P. 59 - 66.




DOI: https://doi.org/10.30906/mitom.2019.3.44-52


© Издательский дом «Фолиум», 1998–2024