Термомеханическое поведение и структурообразование Ti - Zr - Nb-сплава с памятью формы для медицинского применения
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Miyazaki S., Kim H. Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Materials Science and Engineering A. 2006. V. 438 - 440 (spec. iss.). P. 18 - 24.
Biesiekierski A., Wang J., Gepreel M. A. et al. A new look at biomeical Ti-based shape memory alloys // Acta Biomaterialia. 2012. V. 8. P. 1661 - 1669.
Laheurte P., Prima F., Eberhardt A. et al. Mechanical properties of low modulus β titanium alloys designed from the electronic approach // Journal of the Mechanical Behavior of Biomedical Materials. 2010. V. 3(8). P. 565 - 573.
Prokoshkin S., Brailovski V., Dubinskiy S. et al. Manufacturing, structure control, and functional testing of Ti - Nb-based SMA for medical application // Shape Memory and Superelasticity. 2016. V. 2(2). P. 130 - 144.
Sheremetyev V., Petrzhik M., Zhukova Y. et al. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti - Nb-based alloys for bone implants // Journal of Biomedical Materials Research - Part B. Applied Biomaterials. 2020. V. 108(3). P. 647 - 662.
Kim H. Y., Fu J., Tobe H. et al. Crystal structure, transformation strain, and superelastic property of Ti - Nb - Zr and Ti - Nb - Ta alloys // Shape Memory and Superelasticity. 2015. V. 1(2). P. 107 - 116.
Konopatsky А. S., Dubinskiy S. M., Zhukova Yu. S. et al. Manufacturing and characterization of novel Ti - Zr-based // Materials Today: Proceedings. 2017. V. 4(3). P. 4856 - 4860.
Kim K. M., Kim H. Y., Miyazaki S. Effect of Zr content on phase stability, deformation behavior, and Young's modulus in Ti - Nb - Zr Alloys // Materials. 2020. V. 13(2). P. 476.
Ijaz M. F., Kim H. Y., Hosoda H. et al. Superelastic properties of biomedical (Ti - Zr) - Mo - Sn alloys // Materials Science and Engineering C, Materials for Biological Applications. 2014. V. 48. P. 11 - 20.
Guo S., Shi Y., Liu G. et al. Design and fabrication of a (β + α″) dual-phase Ti - Nb - Sn alloy with linear deformation behavior for biomedical applications // Journal of Alloys and Compounds. 2019. V. 805. P. 517 - 521.
Fu J., Yamamoto A., Kim H. Y. et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility // Acta Biomaterialia. 2015. V. 17. P. 56 - 67.
Yang R., Rahman K. M., Rakhymberdiyev A. N. et al. Mechanical behaviour of Ti - Nb - Hf alloys // Materials Science and Engineering A. 2019. V. 740 - 741. P. 398 - 409.
Vieira Nunes A. R., Borborema S., Araъjo L. S. et al. Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable β Ti - 29Nb - 2Mo - 6Zr alloy with low Young's modulus // Journal of Alloys and Compounds. 2020. V. 820. P. 153078.
Kudryashova A., Sheremetyev V., Lukashevich K. et al. Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti - 18Zr - 14Nb alloy for orthopedic implants // Journal of Alloys and Compounds. 2020. V. 843. P. 156066.
Li Q., Niinomi M., Nakai M. et al. Effect of Zr on super-elasticity and mechanical properties of Ti - 24 at% Nb - (0, 2, 4) at% Zr alloy subjected to aging treatment // Materials Science and Engineering A. 2012. V. 536. P. 197 - 206.
Sheremetyev V., Kudryashova A., Dubinskiy S. et al. Structure and functional properties of metastable beta Ti - 18Zr - 14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment // Journal of Alloys and Compounds. 2018. V. 737. P. 678 - 683.
Sheremetyev V., Kudryashova A., Cheverikin V. et al. Hot radial shear rolling and rotary forging of metastable beta Ti - 18Zr - 14Nb (at.%) alloy for bone implants: Microstructure, texture and functional properties // Journal of Alloys and Compounds. 2019. V. 800. P. 320 - 326.
Бернштейн М. Л., Добаткин С. В., Капуткина Л. М., Прокошкин С. Д. Диаграммы горячей деформации, структура и свойства стали. М.: Металлургия, 1989.
Bai X. F., Zhao Y. Q., Zeng W. D. Characterization of hot deformation behavior of a biomedical titanium alloy TLM // Materials Science and Engineering A. 2014. V. 598. P. 236 - 243.
Warchomicka F., Poletti C., Stockinger M. Study of the hot deformation behaviour in Ti - 5Al - 5Mo - 5V - 3Cr - 1Zr // Materials Science and Engineering A. 2011. V. 528. P. 8277 - 8285.
Balasubrahmanyam V. V., Prasad Y. V. R. K. Deformation behaviour of beta titanium alloy Ti - 10V - 4.5Fe - 1.5Al in hot upset forging // Materials Science and Engineering A. 2002. V. 336(1 - 2). P. 150 - 158.
Салтыков С. А. Стереометрическая металлография / Учебник для вузов. М.: Металлургия, 1986. 272 с.
Shuanglei Li, Yeon-wook, Kim Mi-seon Choi, et al. Microstructure, mechanical and superelastic behaviors in Ni-free Ti - Zr - Nb - Sn shape memory alloy fibers prepared by rapid solidification processing // Materials Science and Engineering A. 2020. V. 782. A. 139283.
Золоторевский В. С. Механические свойства металлов / Учебник для вузов. М.: МИСиС, 1998. 400 с.
Та Динь Суан, Шереметьев В. А., Кудряшова А. А. и др. Сравнительное исследование горячей радиально-сдвиговой прокатки заготовок из сверхупругого сплава системы Ti - Zr - Nb и серийного сплава ВТ6 методом QForm-моделирования // Известия вузов. Цветная металлургия. 2020. № 6. С. 32 - 43.
Brailovski V., Kalinicheva V., Letenneur M. et al. Control of density and grain structure of a laser powder bed-fused superelastic Ti - 18Zr - 14Nb alloy // Metals. 2020. V. 10(12). A. 1697.
Brailovski V., Prokoshkin S., Gauthier M. et al. Bulk and porous metastable beta Ti - Nb - Zr(Ta) alloys for biomedical applications // Materials Science and Engineering C. 2011. V. 31. P. 643 - 657.
Дубинский С. М., Прокошкин С. Д., Браиловский В. и др. Формирование структуры при термомеханической обработке сплавов Ti - Nb - Zr(Ta) и проявление эффекта памяти формы // Физика металлов и металловедение. 2011. № 5. С. 503 - 516.
DOI: https://doi.org/10.30906/mitom.2021.8.3-12
© Издательский дом «Фолиум», 1998–2024