Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Особенности электропластического эффекта в моно- и поликристаллическом алюминии

М. А. Пахомов, В. В. Столяров

Аннотация


Исследовано деформационное поведение моно- и поликристалла алюминия при растяжении с воздействием разных мод тока. Показано, что деформационное поведение монокристалла при воздействии одиночных импульсов тока характеризуется упрочнением, а поликристалла - разупрочнением, при повышении в обоих материалах относительного удлинения до разрушения. Механизм деформации в зависимости от режима тока и микроструктуры различается, а относительный вклад электропластического эффекта в снижение напряжений течения выше, чем теплового эффекта тока.

Ключевые слова


aluminum; electroplastic effect; thermal effect; tension; pulse current; monocrystal; polycrystal; deformation behavior

Полный текст:

PDF

Литература


Troitskii O. A. Electromechanical effect in metals // JETP Letters. 1969. No. 1. P. 18 - 22.

Ruszkiewicz J. B., Mears L., Roth J. T. Investigation of heterogeneous joule heating as the explanation for the transient electroplastic stress drop in pulsed tension of 7075-T6 aluminum // Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2018. V. 140, No. 9. Р. 1 - 11.

Ghiotti A., Bruschi S., Simonetto E. et al. Electroplastic effect on AA1050 aluminium alloy formability // CIRP Annals - Manufacturing Technology. 2018. V. 67, Issue 1. P. 289 - 292.

Stolyarov V. V. Evolution of physical and mechanical properties of nanostructured titanium upon annealing // Journal of Machinery Manufacture and Reliability. 2019. V. 48, No. 6. Р. 563 - 568.

Andre D., Burlet T., Kцrkemeyer F. et al. Investigation of the electroplastic effect using nanoindentation // Materials and Design. 2019. V. 183. P. 1 - 10.

Мельникова Н. В., Хон Ю. А. К теории электропластической деформации металлов // Физическая мезомеханика. 2000. № 3. С. 59 - 64.

Ross C., Roth J. T. The effects of dc current on the tensile properties of metals // Proceedings of IMECE. United States of America: Mechanical engineering. 2008. V. 100. Р. 363 - 372.

Xinwei W., Antonio J. Sбnchez Egea, Jie X. et al. Current-induced ductility enhancement of a magnesium alloy AZ31 in uniaxial micro-tension below 373 K // Materials. 2018. V. 12, Issue 1. P. 1 - 12.

Hariharan K., Kim M., Hong S. T. et al. Electroplastic behavior in an aluminium alloy and dislocation density based modeling // Materials and Design. 2017. V. 124. Р. 131 - 142.

Hong-wei L., Yan S. L., Zhan M., Zhang X. Eddy current induced dynamic deformation behaviors of aluminum alloy during EMF: Modeling and quantitative characterization // Journal of Materials Processing Technology. 2019. V. 263. Р. 423 - 439.

Liu J. Y., Zhang K. F. Influence of electric current on superplastic deformation mechanism of 5083 aluminium alloy // Materials Science and Technology. 2016. V. 32, Issue. 6. P. 540 - 546.

Shirinkina I. G., Brodova I. G., Astafiev V. V. et al. Structure and phase transformation in Aluminum-Copper alloys under the effect of electroplastic deformation // Physics of metals and metallography. 2014. V. 115, No. 12. P. 1221 - 1230.

Троицкий О. А., Баранов Ю. В., Авраамов Ю. С., Шляпин А. Д. Физические основы и технологии обработки современных материалов // Теория, технология, структура и свойства. 2004. № 1. С. 590.

Zhao Z., Wang G., Hou H. et al. Influence of high-energy pulse current on the mechanical properties and microstructures of Ti - 6Al - 4V alloy // Journal of Materials Engineering and Performance. 2017. V. 26, No. 10. Р. 5146 - 5153.

Conrad H. Electroplasticity in metals and ceramics // Materials Science and Engineering A. 2000. V. 287, Issue 2. P. 276 - 287.

Park H. G., Kang B. S., Kim J. Numerical modeling and experimental verification for high-speed forming of Al5052 with single current pulse // Metals. 2019. V. 9, Issue 12. Р. 1 - 16.

Roh J. H., Seo J. J., Hong S. T. et al. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current // International journal of plasticity. 2014. V. 58. Р. 84 - 99.

Luan Q., Xing H., Zhang J., Jiang J. Experimental and crystal plasticity study on deformation bands in single crystal and multi-crystal pure aluminium // Acta Materialia. 2020. V. 183. Р. 78 - 92.

Krishnaswamy H., Kim M. J., Hong S. T. et al. Electroplastic behavior in an aluminium alloy and dislocation density based modelling // Materials and Design. 2017. V. 124. Р. 131 - 142.

Choi I., Jin S., Kang S. Effects of microstructure and alloy contents on the Lьders line formation in Al - Mg alloys // Scripta Materialia. 1998. V. 38, Issue. 6. Р. 887 - 892.

Reyne B., Manach P. Y., Moлs N. Macroscopic consequences of Piobert - Lьders and Portevin - Le Chatelier bands during tensile deformation in Al - Mg alloys // Materials Science and Engineering A. 2019. V. 746. Р. 187 - 196.

Шибков А. А., Желтов М. А., Гасанов М. Ф., Золотов А. Е. Динамика полосы Людерса и разрушение алюминий-магниевого сплава, инициированные концентратором напряжений // Физика твердого тела. 2018. № 60, Выпуск 2. С. 315 - 322.

Furukawa M., Iwahashi Y., Horita Z. et al. Structural evolution and the Hall - Petch relationship in an Al - Mg - Li - Zr alloy with ultra-fine grain size // Acta Materialia. 1997. V. 45, Issue 11. P. 4751 - 4757.

Коновалов С. В., Загуляев Д. В., Иванов Ю. Ф., Громов В. Е. Влияние магнитного поля на поверхность разрушения алюминия при ползучести // Вестник ННГУ. 2011. № 2. С. 33 - 37.





© Издательский дом «Фолиум», 1993–2021