

Интегральная диффузионная модель кинетики роста нитридного слоя при газовом азотировании армко-железа
Аннотация
Ключевые слова
Литература
Pye D. Practical nitriding and ferritic nitrocarburizing. Materials Park, OH: ASM International, 2003.
Keddam M., Djeghlal M. E., Barrallier L., Salhi E. Caractйrisation superficielle d'un acier nitrurй 32CrMoV13, Annales de Chimie // Sciences des Matйriaux. 2003. V. 28. P. 41 - 51.
Michalski J., Wolowiec-Korecka E. A study of parameters of nitriding processes // Metal Science and Heat Treatment. 2019. V. 161. P. 183 - 190.
Maldzinski L., Liliental W., Tymowski G., Tacikowski J. New possibilities for controlling gas nitriding process by simulation of growth kinetics of nitride layers // Surface Engineering. 1999. V. 15. P. 377 - 384.
Yang M., Sisson R. D. Jr. Modeling the nitriding of steel by compound layer growth model // Materials Performance and Characterization. 2012. V. 1. P. 1 - 10.
Somers M. A. J., Mittemeijer E. J. Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides // Metall. Mater. Trans. 1995. V. 26A. P. 57 - 74.
Du H., Agren J. Gaseous nitriding of iron: Evaluation of diffusion of N in γ' and ε phases // Z. Metallkd. 1995. V. 86. P. 522 - 529.
Mittemeijer E. J., Somers M. A. J. Thermodynamics, kinetics, and process control of nitriding // Surf. Eng. 1997. V. 6. P. 483 - 497.
Torchane L., Bilger P., Dulcy J., Gantois M. Control of iron nitride layers growth kinetics in the binary Fe - N system // Metall. Mater. Trans. 1996. V. 27A. P. 1823 - 1835.
Campos I., Oseguera J., Figueroa U., Melendez E. Growth kinetics of nitride layers during post discharge nitriding // Surf. Coat. Technol. 1998. V. 102. P. 127 - 131.
Fraguela A., Go'mez J. A., Castillo F., Oseguera J. An approach for the identification of diffusion coefficients in the quasi-steady state of a post-discharge nitriding process // Math. Comput. Simul. 2009. V. 79. P. 1878 - 1894.
Keddam M. Surface modification of the pure iron by the pulse plasma nitriding: Application of a kinetic model // Mater. Sci. Eng. A. 2007. V. 462. P. 169 - 173.
Keddam M., Djeghlal M., Barrallier L., Salhi E. Computer simulation of nitrided layers growth for pure iron // Comp. Mat. Sci. 2004. V. 29. P. 43 - 48.
Keddam M., Djeghlal M., Barrallier L. A diffusion model for simulation of bilayer growth (ε/γ') of nitrided pure iron // Materials Science and Engineering A. 2004. V. 378. P. 475 - 478.
Hosseini S. R., Ashrafizadeh F., Kermanpur. Calculation and experimentation of the compound layer thickness in gas and plasma nitriding of iron // Iranian Journal of Science and Technology. Transaction B: Engineering. 2010. V. 34. P. 553 - 566.
Ratajski J. Model of growth kinetics of nitrided layer in the binary Fe - N system // Z. Metallkd. 2004. V. 95. P. 823 - 828.
Cazares Leon F., Ceniceros Jimenez A., Pena Oseguera J., Aranguren Castillo F. Modeling surface processes and kinetics of compound layer formation during plasma nitriding of pure iron // Revista Mexicana de Fisica. 2014. V. 60. P. 257 - 268.
Sun Y., Bell T. A numerical model of plasma nitriding of low alloy steels // Mater. Sci. Eng. A. 1997. V. 224. P. 33 - 47.
Young-Min Kim, Seok Won Son, Won-Beom Lee. Thermodynamic and kinetic analysis of formation of compound layer during gas nitriding of AISI 1018 carbon steel // Met. Mater. Int. 2018. V. 24. P. 180 - 186.
Belmonte T., Goune M., Michel H. Numerical modeling of interstitial diffusion in binary systems. application to iron nitriding // Mater. Sci. Eng. A. 2001. V. 302. P. 246 - 257.
Kouba R., Keddam M. Numerical prediction of the compound layer growth during the gas nitriding of Fe - M binary alloys // Materials and Technology. 2015. V. 49. P. 43 - 53.
Jung M., Meka S. R., Rheingans B., Mittemeijer E. J. Coupling inward diffusion and precipitation kinetics; the case of nitriding iron-based alloys // Metallurgical and Materials Transactions. 2016. V. 47A. P. 1425 - 1439.
Zouzou C., Keddam M. Boriding kinetics of FeB and Fe2B layers on AISI M2 steel by the integral diffusion model // Annales de Chimie-Sciences des Matйriaux. 2019. V. 43. P. 159 - 164.
Goodman T. R. Application of integral methods to transient nonlinear heat transfer // Advances in Heat Transfer. 1964. V. 1. P. 51 - 122.
Ascher U., Petzold L. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia. SIAM. 1998.
Press W. H., Flannery B. P., Teukolsky S. A. Numerical recipes in Pascal: the art of scientific computing. Cambridge University. 1989.
Du H., Agren J. Theoretical Treatment of Nitriding and Nitrocarburizing of Iron // Metallurgical and Materials Transactions. A. 1996. V. 27. P. 1073 - 1080.
Куба Р., Кеддам М., Кулька М. Моделирование кинетики роста слоев CoB и Co2B на сплаве ASTM F-75 // МиТОМ. 2021. № 2. С. 44 - 51. (Kouba R., Keddam M., Kulka M. Modeling of the growth kinetics of CoB and Co2B layers on ASTM F-75 alloy // Accepted in Metal Science and Heat Treatment. 2021. V. 63. No. 1- 2).
DOI: https://doi.org/10.30906/mitom.2021.3.36-44
© Издательский дом «Фолиум», 1998–2025