Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние давления компактирования на механические свойства порошковой стали 0,06 % С - 22 % Cr - 13 % Ni - 5 % Mn - 2 % Mo, полученной механическим легированием с последующим отжигом

П. Кишор Кумар, Р. Марьяппан, Н. Виджайа Сай, А. Гопала Кришна

Аннотация


Исследованы механические свойства порошковой стали, содержащей 0,06 % C, 22 % Cr, 13 % Ni, 5 % Mn, 2,0 % Mo (UNS S20910), полученной механическим легированием с последующим отжигом. Определены изменения структуры в процессе механического легирования и отжига методами рентгеновской дифракции, световой и электронной сканирующей микроскопии с приставкой для энергодисперсионного анализа. Определены режимы прессования и спекания для получения оптимальных механических свойств стали.

Ключевые слова


austenitic steel; mechanical alloying; phase transformations; compaction pressure; mechanical properties

Полный текст:

PDF

Литература


Zinkle S. J., Busby J. T. Structural materials for fission & fusion energy // Materials Today. 2009. V. 12(11). P. 12 - 19. (https://doi.org/10.1016/S1369-7021(09)70294-9).

Speidel M. O. New nitrogen-bearing austenitic stainless steels with high strength and ductility // Met. Sci. Heat Treat. 2005. V. 47. P. 489. (https://doi.org/10.1007/s11041-006-0017-y).

https://www.hpalloy.com/Alloys/descriptions/NITRONIC50.aspx (Accessed on June 2019).

Ke Y., Ren Y. Nickel-free austenitic stainless steels for medical applications // Science and Technology of Advanced Materials. 2010. V. 11, P. 1468 - 6996. (https://doi.org/10.1088/1468-6996/11/1/014105).

Bracke L., Mertens G., Penning J. et al. Influence of phase transformations on the mechanical properties of high-strength austenitic Fe - Mn - Cr steel // Metall. and Mat. Trans. A. 2006. V. 37. P. 307. (https://doi.org/10.1007/s11661-006-0002-5).

Pardo A., Merino M. C., Coy A. E. et al. Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions // Corrosion Science. 2008. V. 50. P. 1796 - 1806. (https://doi.org/10.1016/j.corsci.2008.04.005).

Karmiol Z., Chidambaram D. Comparison of performance and oxidation of nitronic-50 and stainless steel 316 in subcritical and supercritical water environments // Metallurgical and Materials Transactions A. 2016. V. 47. P. 2498. (https://doi.org/10.1007/s11661-016-3368-z).

Suryanarayana C. Mechanical alloying and milling // Progress in Materials Science. 2001. V. 46(1 - 2). P. 1 - 184. (https://doi.org/10.1016/S0079-6425(99)00010-9).

Kumar K. et al. Effect of Y2O3 addition and cooling rate on mechanical properties of Fe - 24Cr - 20Ni - 2Mn steels by powder metallurgy route // Composites Communications. 2018. V. 10. P. 116 - 121. (https://doi.org/10.1016/j.coco.2018.09.003).

Garcia-Cabezon C., Blanco Y., Rodriguez-Mende M. L., Martin-Pedrosa F. Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying // Journal of Alloys and Compounds. 2017. V. 716. P. 46 - 55. (https://doi.org/10.1016/j.jallcom.2017.05.045).

Kumar P. K., Sai N. V., Krishna A. G. Influence of sintering conditions on microstructure and mechanical properties of alloy 218 steels by powder metallurgy route // Arabian Journal for Science and Engineering. 2018. V. 43. P. 4659 - 4674. (https://doi.org/10.1007/s13369-017-3015-z).

Kurgan N., Varol R. Mechanical properties of P/M 316L stainless steel materials // Powder Technology. 2010. V. 201. P. 242 - 247. (https://doi.org/10.1016/j.powtec.2010.03.041).

Pandya S., Ramakrishna K. S., Raja A., Upadhyaya A. Effect of sintering temperature on the mechanical and electrochemical properties of austenitic stainless steel // Materials Science and Engineering A. 2012. V. 556. P. 271 - 277. (https://doi.org/10.1016/j.msea.2012.06.087).

Chauhan S., Verma V., Prakash U. et al. Influence of sintering temperature and cooling rate on microstructure and mechanical properties of pre-alloyed Fe - Cr - Mo powder metallurgy steel // Trans Indian Inst. Met. 2018. V. 71. P. 219. (https://doi.org/10.1007/s12666-017-1157-z).

Abbaschian R., Reed-Hill R. E. Physical Metallurgy Principles. 4th edition. 2009.

Rane G. K., Welzel U., Mittemeijer E. J. Grain growth studies on nanocrystalline Ni powder // Acta Materialia. 2012. V. 60. P. 7011 - 7023. (https://doi.org/10.1016/j.actamat.2012. 08.059).

Wang M., Sun H., Zou H. et al. Structural evolution of oxide dispersion strengthened austenitic powders during mechanical alloying and subsequent consolidation // Powder Technology. 2015. V. 272. P. 309 - 315. (https://doi.org/10.1016/ j.powtec.2014.12.008).

Enayati M. H., Bafandeh M. R. Phase transitions in nanostructured Fe - Cr - Ni alloys prepared by mechanical alloying // Journal of Alloys and Compounds. 2000. V. 454. P. 228 - 232. (https://doi.org/10.1016/j.jallcom.2007.03.064).

Mahesh K., Sankaran S., Venugopal P. Microstructural characterization and mechanical properties of powder metallurgy dual phase steel preforms // Journal of Materials Science & Technology. 2012. V. 28. P. 1085 - 1094. (https://doi.org/ 10.1016/S1005-0302(12)60177-7).

Chih-Chun H., Weite W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels // ISRN Metallurgy. 2012. (http://dx.doi.org/10.5402/2012/732471).

Sourmail T. Precipitation in creep resistant austenitic stainless steels // Materials Science and Technology. 2001. V. 17. P. 267 - 836. (https://doi.org/10.1179/026708301101508972).





© Издательский дом «Фолиум», 1993–2021