Исследование термоциклического разупрочнения горячедеформированной штамповой стали
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Caliskanoglu D., Siller I., Ebner R., Leitner H. Thermal fatigue and softening behaviour of hot work tool steels. Proceedings of the 6th International Tooling Conference, The Use of Tools Steels, Austria, 2002; Bergstrom J., Eds.; European Structural Integrity Society: Karlstad, Sweden, 2002.
Faisal Q., Masood S., Osama S. et al. Numerical simulation of thermal fatigue behaviour in a cracked disc of AISI H-11 tool steel // Eng. Fail. Anal. 2016. V. 62. P. 242 - 253.
Faisal Q., Atif K., Asghar A., Masood S. 3D numerical simulation of thermal fatigue damage in wedge specimen of AISI H13 tool steel // Eng. Fract. Mech. 2017. V. 180. P. 240 - 253.
Bischof M., Staron P., Caliskanoglu D. et al. On the overaging behaviour of tool steel X38CrMoV5-3 // Mat. Sci. Eng. A. 2008. V. 472. P. 148 - 156.
Chauhan A., Hoffmann J., Litvinov D., Aktaa J. High-temperature low-cycle fatigue behaviour of a 9Cr-ODS steel: Part 2-hold time influence, microstructural evolution and damage characteristics // Mat. Sci. Eng. A. 2018. V. 730. P. 197 - 206.
Verma P., Basu J., Srinivas N. C. S., Singh V. Deformation behaviour of modified 9Cr - 1Mo steel under low cycle fatigue at 600 °C // Mater. Charact. 2017. V. 131. P. 244 - 252.
Delagnes D., Rйzaď-Aria F., Levaillant C. Influence of testing and tempering temperatures on fatigue behaviour, life and crack initiation mechanisms in a 5 % Cr martensitic steel // Proc. Eng. 2010. V. 2. P. 427 - 439.
StraЯberger L., Chauhan A., Czink S., Aktaa J. High-temperature low-cycle fatigue behaviour and microstructural evolution of an ODS steel based on conventional T91 // Int. J. Fatigue. 2017. V. 100. P. 50 - 57.
Pešičkaa J., Aghani A., Somsen C. H. et al. How dislocation substructures evolve during long-term creep of a 12 % Cr tempered martensitic ferritic steel // Scripta Mater. 2010. V. 62. P. 353 - 356.
Reggiani B., Donati L., Zhou J., Tomesani L. The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies // J. Mater. Process. Tech. 2010. V. 210. P. 1613 - 1623.
Pineau A., Benzerga A. A., Pardoen T. Failure of metals III: Fracture and fatigue of nanostructured metallic materials // Acta Mater. 2016. V. 107. P. 508 - 544.
Sun J., Ji K., Jiang C. W., Zhang Y. C. Influence of various heat treatment stages on evolution of microstructure and grain in H407 steel // Met. Mater. Int. 2016. V. 22. P. 872 - 879.
Meng C. Effect of materials, shape coupling elements and thermal cyclic temperatures on the thermal fatigue property of hot-work dies. Doctoral Dissertation. Jilin University, Changchun, China. 2014.
Grьning A., Lebsanft M., Scholtes B. Cyclic stress-strain behaviour and damage of tool steel AISI H11 under isothermal and thermal fatigue conditions // Mat. Sci. Eng. A. 2010. V. 527. P. 1979 - 1985.
Lin H. Q. Effects of electropulsing on the microstructure, mechanical properties and thermal fatigue behaviours of die steel heat affected zone. Doctoral Dissertation. Jilin University, Changchun, China. 2009.
Korchuganova O. A., Thuvander M., Aleev A. A. et al. Microstructural evolution of Fe - 22 % Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography // J. Nucl. Mater. 2016. V. 477. P. 172 - 177.
Persson A., Hogmark S., Bergstrцm J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels // Int. J. Fatigue. 2004. V. 26. P. 1095 - 1107.
Egger W., Kцgel G., Sperr P. et al. Vacancy clusters close to a fatigue crack observed with the Mьnchen scanning positron microscope // Appl. Surf. Sci. 2002. V. 194. P. 214 - 217.
DOI: https://doi.org/10.30906/mitom.2021.1.19-27
© Издательский дом «Фолиум», 1998–2024