Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Контроль термической обработки цементуемой стали 18CrNiMo7-6 методом определения глубины проникновения вихревых токов

Лара Вивиан Фрике, Себастьян Бартон, Ханс Юрген Майер, Дэвид Заремба

Аннотация


Определены относительная магнитная проницаемость и электрическое сопротивление в интервале температур от комнатной до 800 °C стали 18CrNiMo7-6 с разной структурой: мартенситной, бейнитной и ферритно-перлитной. Проанализировано изменение магнитных свойств стали в зависимости от температуры и микроструктуры и их влияние на глубину проникновения вихревых токов.

Ключевые слова


structure; depth of penetration of eddy currents; heat treatment; eddy current method of nondestructive inspection; magnetic permeability

Полный текст:

PDF

Литература


Bruchwald O., Frackowiak W., Reimche W., Maier H. J. Non-destructive in situ monitoring of the microstructural development in high performance steel components during heat treatment // La Metallurgia Italiana. 2015. No. 11/12. P. 29 - 37.

Zhang C., Bowler N., Lo C. Magnetic characterization of surface-hardenedsteel // Journal of Magnetism and Magnetic Materials. 2009. V. 321(23). P. 3878 - 3887.

John Cuffee, Haiyan Sun, Yuri Plotnikov. Eddy current measurement of casehardened depth of steel components / 17th World Conference on Nondestructive Testing, 25 - 28 Oct, 2008, Shanghai, China URL https://www.ndt.net/article/ wcndt2008/papers/383.pdf.

Blaow M., Evans J., Shaw B. Effect of hardness and composition gradients on barkhausen emission in case hardened steel // Journal of Magnetism and Magnetic Materials. 2006. V. 303(1). P. 153 - 159.

Kobayashi S., Takahashi H., Kamada Y. Evaluation of case depth ininduction-hardened steels: Magnetic hysteresis measurements and hardness depth profiling by differential permeability analysis // Journal of Magnetism and Magnetic Materials. 2013. V. 343. P. 112 - 118.

Kai Y., Tsuchida Y., Enokizono M. Magnetic evaluation of hardening effect of carbon steel // Journal of Optoelectronics and Advanced Materials. 2008. V. 10. P. 1078 - 1084.

Cullity B. D., Graham C. D. Introduction to magnetic materials, 2nd Edition - IEEE Press and Wiley. Piscataway. NJ and Hoboken. NJ: 2009.

Tian Y. Electrical conductivity and magnetic permeability measurement ofcase hardened steels // AIP Conference Proceedings. V. 1650(462). 2015. P. 462 - 469.

Hao X., Yin W., Strangwood M. et. al. Modelling the electromagnetic response of two-phase steel microstructures // NDT & E International. 2010. V. 43(4). P. 305 - 315.

Bida G. V., Nichipuruk A. P., Tsar'kova T. P. Magnetic properties of steels after quenching and tempering. 1. General. Carbon steels // Russian Journal of Nondestructive Testing. 2001. V. 37(2). P. 79 - 99.

Boehm A., Hahn I. Measurement of magnetic properties of steel at high temperatures // IEEE Xplore. 2014. P. 715 - 721.

Van der Pauw L. J. A method of measuring the resistivity and hall coefficienton lamellae of arbitrary shape // Philips Technical Review. 1958. V. 20. P. 220 - 224.

Borup K. A., Toberer E. S., Zoltan L. D. et al. Measurement of the electrical resistivity and hall coefficient at high temperatures // Review of Scientific Instruments. 2012. V. 83(123902). Art. 123902-1-7.

Wood C., Lockwodd A., Chmielewski A. et al. High temperature hall-effect apparatus // Review of Scientific Instruments. 1983. V. 55 (110). P. 110 - 113.

Hadi S., Indrawan A. Y., Kurniawan A., Suyinto S. Feasibility study of high-temperature resistivity measurement appartus with four-poin tprobe method: Designing, manufacturing, and validating process // AIP Conference Proceddings. 2017. V. 1788(030135). Art. 030135-1-7.

Kasl C., Hoch M. J. R. Effects of sample thickness on the van der Pauw technique for resistivity measurements // Review of Scientific Instruments. 2005. V. 76(033907). Art. 033907-1-4.

DIN EN ISO 127128. Non-destructive testing Vocabulary. 2018. (ISO / DIS12718:2018).

Mitra A., Govindaraju M. R., Jiles D. C. Influence of microstructure on micromagnetic barkhausen emissions in AISI 4140 steel // IEEE Transactions on Magnetics. 1995. V. 31(6). P. 4053 - 4055.

Jiles D. C. The effect of compressive plastic deformation on the magnetic properties of aisi 4130 steels with various microstructures // Journal of Physics D: Applied Physics. 1988. V. 21(7). P. 1196 - 1204.

Vertesy G., Uchimoto T., Takagi T. et al. Nondestructive characterization of flake graphite cast iron by magnetic adaptive testing // NDT & E International. 2015. V. 74. P. 8 - 14.

Jiles D. C. Magnetic properties and microstructure of AISI 1000 series carbon steels // Journal of Physics D: Applied Physics. 1988. V. 21(7). P. 1186 - 1195.

Kisin V. N., Kovrigin V. A., Kulikova N. A. Magnetic properties and electrical conductivity of 58 (55PP) and 47GT steels after hardening and tempering // Metal Science and Heat Treatment. 1984. V. 26(7). P. 489 - 492.

Dijkstra L. J., Wert C. Effect of inclusions on coercive force of iron // Physical Review. 1950. V. 79(6). P. 979 - 985.

Chikazumi S. Physics of Ferromagnetism; 2nd Edition - Oxford Science Publications, Oxford University Press, Great Clarendon Street, Oxford OX26DP, (1997).

Radhakrishnamurty C., Likhite S. Hopkinson effect, blocking temperature and curie point in basalts // Earth and Planetary Science Letters. 1970. V. 7(5). P. 389 - 396.

Morishita M., Takahashi N., Miyagi D., Nakano M. Examination of magnetic properties of several magnetic materials at high temperature // Przeglad Elektrotechniczny. 2011. V. 87. P. 106 - 110.

Tavares S. S. M., Fruchart D., Miraglia S., Laborie D. Magnetic properties of an AISI 420 martensitic stainless steel // Journal of Alloys and Compounds. 2000. V. 312. P. 307 - 314.




DOI: https://doi.org/10.30906/mitom.2020.11.60-67


© Издательский дом «Фолиум», 1998–2024