Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Исследование трибологических свойств рельсовых и колесных сталей

Фатих Бозкурт, Юмит Эр

Аннотация


Исследованы характеристики износостойкости сталей AISI 51B60H и 30MnB5 с различным содержанием углерода и бора. Проведен анализ микроструктуры и твердости сталей. Рассчитаны удельные скорости изнашивания в условиях сухого и влажного трения, определены коэффициенты трения. Изучены изношенные поверхности образцов рельса методами электронной микроскопии. Рассмотрена возможность использования борсодержащих сталей взамен стали R260, которая применяется для изготовления высокоскоростных железных дорог.

Ключевые слова


износ рельса; мартенситные стали для рельсов; трибология рельса; борсодержащие стали; rail wear; martensitic steels for rails; tribology of rails; boron steels

Полный текст:

PDF

Литература


Song Y., Lu J., Hua L. et al. Influence of thermal deformation conditions on the microstructure and mechanical properties of boron steel // Materials Science & Engineering A. 2017. V. 701. P. 328 - 337.

Hardell J., Kassfeldt E., Prakash B. Friction and wear behaviour of high strength boron steel at elevated temperatures of up to 800 °C // Wear. 2008. V. 12. P. 788 - 799.

Hardell J., Prakash B. High-temperature friction and wear behaviour of different tool steels during sliding against Al - Si-coated high-strength steel // Tribology International. 2008. V. 9. P. 663 - 671.

Kassfeldt E., Lundmark J. Tribological properties of hardened high strength Boron steel at combined rolling and sliding condition // Wear. 2009. V. 267. P. 2287 - 2293.

Zhu Y., Lyu Y., Olofsson U. Wear between wheel and rail: A pin-on-disc study of environmental conditions and iron oxides // Wear. 2015. V. 328 - 329. P. 277 - 285.

Matsumoto K., Suda Y., Komine H. et al. A proposal of wheel/rail contact model for friction control // Journal of Mechanical Science and Technology. 2005. V. 19-1. P. 437 - 443.

Hur H., Park J., You W., Park T. A study on critical speed of worn wheel profile using a scale model // Journal of Mechanical Science and Technology. 2009. V. 23. P. 2790 - 2800.

Santa J. F., Toro A., Lewis R. Correlations between rail wear rates and operating conditions in a commercial railroad // Tribology International. 2016. V. 95. P. 5 - 12.

Зakır F. H., Зelik O. N. Effect of isothermal bainitic quenching on rail steel impact strength and wear resistance // Metal Science and Heat Treatment. 2017. V. 59. P. 289 - 293.

Iwnicki S. Handbook of Railway Vehicle Dynamics. CRC Press, 2006.

Olofsson U., Telliskivi T. Wear, plastic deformation and friction of two rail steels a full scale test and a laboratory study // Wear. 2003. V. 254. P. 80 - 93.

Zhu Y., Olofsson U., Persson K. Investigation of factors influencing wheel-rail adhesion using a mini-traction machine // Wear. 2012. V. 292 - 293. P. 218 - 231.

Cuevas O. A., Li Z., Lewis R. A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel - rail contact // Wear. 2011. V. 271. P. 14 - 24.

Liu Q. Y., Wang W. J., Shen P. et al. Experimental study on adhesion behavior of wheel/rail under dry and water conditions // Wear. 2011. V. 271. P. 2699 - 2705.

Liu Q. Y., Wang W. J., Zhang H. F. et al. Study on the adhesion behavior of wheel/rail under oil, water and sanding conditions // Wear. 2011. V. 271. P. 2693 - 2698.

Ramalho A. Wear modelling in rail-wheel contact // Wear. 2015. V. 330 - 331. P. 524 - 532.

Ramalho A., Esteves M., Marta P. Friction and wear behaviour of rolling-sliding steel contacts // Wear. 2013. V. 302. P. 1468 - 1480.

Wang W. J., He C. G., Huang Y. B. et al. Experimental investigation on the effect of tangential force on wear and rolling contact fatigue behaviors of wheel material // Tribology International. 2015. V. 92. P. 307 - 316.

Wang W. J., Ding H. H., Fu Z. K. et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials // Wear. 2015. V. 330 - 331. P. 563 - 570.

Zhu Y., Chen X., Wang W., Yang H. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts // Wear. 2015. V. 328 - 329. P. 241 - 248.

Lewis R., Olofsson U. Wheel-Rail Interface Handbook. Woodhead Publishing. 2009.

Pau M., Aymerich F., Ginesu F. Distribution of contact pressure in wheel-rail contact area // Wear. 2002. V. 253. P. 265 - 274.

Deters L., Proksch M. Friction and wear testing of rail and wheel material // Wear. 2005. V. 258. P. 981 - 991.

Kabzinski J. Adaptive, compensating control of wheel slip in railway vehicles // Bulletin of the Polish Academy of Sciences: Technical Sciences. 2015. V. 63(4). P. 955 - 963.

Yokoyama H., Mitao S., Yamamoto S. et. al. High strength bainitic steel rails for heavy haul railways with superior damage resistance // NKK Technical Review. 2001. V. 84. P. 44 - 51.

Lewis R., Gallardo-Hernandez E. A. Twin disc assessment of wheel/rail adhesion // Wear. 2008. V. 265. P. 1309 - 1316.

Ramalho A., Miranda J. C. Friction and wear of electroless NiP and NiP+PTFE coatings // Wear. 2005. V. 259. P. 828 - 834.

Zajic J., Hanus P., Schmid M. Evaluation of operational hardening of the railway wheels surface layers // Advanced Manufacturing and Repair Technologies in Vehicle Industry: 33rd International Colloquium, Western Tatras. Zuberec, Slovakia. 2016. P. 120 - 123.

Sheinman E. Wear of rails. A review of the American press // Journal of Friction and Wear. 2012. V. 33(4). P. 308 - 314.

Mьller R., Gratacos P., Mora P. et al. Definition of wheel maintenance measures for reducing ground vibration: Railway Induced Vibration Abatement Solutions Collaborative Project Report. 2013. 87 p.




DOI: https://doi.org/10.30906/mitom.2020.6.50-60


© Издательский дом «Фолиум», 1998–2025