Микроструктура и трибологические свойства инструментальной стали AISI O2 после глубокой криогенной термической обработки
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Smol'nikov E. A., Kossovich G. A. Cold treatment of cutting tools // Metal Science and Heat Treatment. 1980. V. 22, No. 10. P. 704 - 705.
Sonar T., Lomte S., Gogte C. et al. Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis // Procedia Manufacturing. 2018. V. 20. P. 113 - 118.
Thelning K.-E. Steel and Its Heat Treatment. 2000. English.
Yong J., Ding C., Qiong J. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91 // Metal Science and Heat Treatment. 2012. V. 53, No. 11 - 12. P. 589 - 591.
Araghchi M., Mansouri H., Vafaei R. Influence of cryogenic thermal treatment on mechanical properties of an Al - Cu - Mg alloy // Materials Science and Technology. 2017. V. 34, No. 4. P. 468 - 472.
Akhbarizadeh A., Javadpour S. Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment // Materials Letters. 2013. V. 93. P. 247 - 250.
Li S., Wu X. Microstructural evolution and corresponding property changes after deep cryotreatment of tool steel // Materials Science and Technology. 2015. V. 31, No. 15. P. 1867 - 1878.
American Society for M. Transactions of American Society for Metals. Transactions of American Society for Metals. 1934. English.
Stepanov G. A., Lokhankina L. K., Gorbunov V. A. Structure and properties of steel 12Kh18N10T after prolonged operation at - 183 °C // Metal Science and Heat Treatment. 1976. V. 18, No. 5 - 6. P. 430.
Moore K., Collins D. N. Cryogenic treatment of three heat- treated tool steels // Key Engineering Materials. 1993. V. 86 - 87. P. 47 - 54.
Collins D. N., Dormer J. Deep cryogenic treatment of a D2 cold-work tool steel // Heat Treatment of Metals. 1997. V. 24. P. 71 - 74.
Yun D., Xiaoping L., Hongshen X. Classic contributions: cryogenic treatment Deep cryogenic treatment of high speed steel: microstructure and mechanism // International Heat Treatment and Surface Engineering. 2013. V. 2, No. 2. P. 80 - 84.
Pillai R., Pai B., Satyanarayana K. Deep cryogenic treatment of metals // Tool Alloy Steels. 1986. P. 205 - 208.
Dhokey N. B., Nirbhavne S. Dry sliding wear of cryotreated multiple tempered D-3 tool steel // Journal of Materials Processing Technology. 2009. V. 209, No. 3. P. 1484 - 1490.
Das D., Dutta A. K., Ray K. K. Inconsistent wear behaviour of cryotreated tool steels: role of mode and mechanism // Materials Science and Technology. 2013. V. 25, No. 10. P. 1249 - 1257.
Bensely A., Prabhakaran A., Mohan Lal D. et al. Enhancing the wear resistance of case carburized steel (EN 353) by cryogenic treatment // Cryogenics. 2005. V. 45, No. 12. P. 747 - 754.
Ray K. K., Das D. Improved wear resistance of steels by cryotreatment: the current state of understanding // Materials Science and Technology. 2016. V. 33, No. 3. P. 340 - 354.
Wang K., Gu K., Miao J. et al. Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment // Materials Science and Engineering: A. 2018.
Zhirafar S., Rezaeian A., Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel // Journal of Materials Processing Technology. 2007. V. 186, No. 1 - 3. P. 298 - 303.
Leskovšek V., Kalin M., Vižintin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS // Vacuum. 2006. V. 80, No. 6. P. 507 - 518.
DOI: https://doi.org/10.30906/mitom.2020.6.44-50
© Издательский дом «Фолиум», 1998–2024