Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Получение медицинских титановых сплавов со сниженным модулем упругости методом селективного лазерного плавления. Обзор

В. В. Соколова, И. А. Полозов, А. А. Попович

Аннотация


Рассмотрены различные системы биосовместимых сплавов, преимущественно на основе систем Ti – Nb и Ti – Ta, используемых для медицинских целей. Проанализированы особенности получения таких сплавов методом селективного лазерного плавления. Представлены перспективы дальнейшего применения аддитивных технологий получения качественного и безопасного материала с использованием β-титановых порошковых сплавов для медицинских изделий с повышенными эксплуатационными свойствами.

Ключевые слова


селективное лазерное плавление; титановые сплавы; медицинские сплавы; порошковая металлургия

Полный текст:

PDF

Литература


Попович А. А. Аддитивные технологии как новый способ создания перспективных функциональных материалов // МиТОМ. 2020. № 1. С. 19 – 25.

Saptarshi S. M., Zhou C. Basics of 3D printing: engineering aspects // 3D Print. Orthop. Surg. 2019. P. 17 – 30.

Yarikov A. V., Gorbatov R. O., Denisov A. A. et al. Application of additive 3d printing technologies in neurosurgery, vertebrology and traumatology and orthopedics // J. Clin. Pract. 2021. V. 12. P. 90 – 104.

Попович А. А., Суфияров В. Ш., Полозов И. А. и др. Применение аддитивных технологий для изготовления индивидуальных компонентов эндопротеза тазобедренного сустава из титановых сплавов // Медицинская техника. 2016. № 3. С. 43 – 46.

Choi S., Kang Y. S., Yeo I. S. L. Influence of implant–abutment connection biomechanics on biological response: a literature review on interfaces between implants and abutments of titanium and zirconia // Prosthes. 2023. V. 5. P. 527 – 538.

Weinans H., Huiskes R., Grootenboer H. J. Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling // J. Biomech. Eng. 1994. V. 116. P. 393 – 400.

Tokgoz E., Levitt S., Sosa D. et al. Complications of total knee arthroplasty // Total Knee Arthroplast. 2023. P. 71 – 93.

Ali S., Abdul Rani A. M., Baig Z. et al. Biocompatibility and corrosion resistance of metallic biomaterials // Corros. Rev. 2020. V. 38. P. 381 – 402.

Zhang L. C., Chen L. Y. A Review on biomedical titanium alloys: recent progress and prospect // Adv. Eng. Mater. 2019. V. 21. Art. 1801215.

Venugopalan R., Wu M. H. Medical Device Materials III: Proceedings from the Materials & Processes for Medical Devices Conference 2005. November 14 – 16, 2005. Boston, Massachusetts, USA. 2006. 250 p.

Fleps I., Bahaloo H., Zysset P. K. et al. Empirical relationships between bone density and ultimate strength: A literature review // J. Mech. Behav. Biomed. Mater. 2020. V. 110. Art. 103866.

Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods // Sci. Technol. Adv. Mater. 2003. V. 4. P. 445 – 454.

Niinomi M., Hattori T., Morikawa K. et al. Development of low rigidity -type titanium alloy for biomedical applications // Mater. Trans. 2002. V. 43. P. 2970 – 2977.

Chen L. Y., Cui Y. W., Zhang L. C. Recent development in beta titanium alloys for biomedical applications // Metals. 2020. V. 10, Is. 9. Art. 1139.

Wapner K. L. Implications of metallic corrosion in total knee arthroplasty // Clin. Orthop. Relat. Res. 1991. V. 271. P. 12 – 20.

Domingo J. L. Vanadium: A review of the reproductive and developmental toxicity // Reprod. Toxicol. 1996. V. 10. P. 175 – 182.

Olaolorun F. A., Olopade F. E., Usende I. L. et al. Neurotoxicity of vanadium // Adv. Neurotoxicology 2021. V. 5. P. 299 – 327.

Bondy S. C. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration // Neurotoxicology. 2016. V. 52. P. 222 – 229.

Wang X., Speirs M., Kustov S. et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect // Scr. Mater. 2018. V. 146. P. 246 – 250.

Farber E., Orlov A., Borisov E. et al. TiNi alloy lattice structures with negative poisson’s ratio: computer simulation and experimental results // Metals. 2022. V. 12. Art. 1476.

Genchi G., Carocci A., Lauria G. et al. Nickel: human health and environmental toxicology // Int. J. Environ. Res. Public Heal. 2020. V. 17. Art. 679.

Safavi M. S., Bordbar-Khiabani A., Walsh F. C. et al. Surface modified NiTi smart biomaterials: Surface engineering and biological compatibility // Curr. Opin. Biomed. Eng. 2023. V. 25. Art. 100429.

Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti – 29Nb – 13Ta – 4.6Zr // Biomaterials 2003. V. 24. P. 2673 – 2683.

Kim H. Y., Ikehara Y., Kim J. I. et al. Martensitic transformation, shape memory effect and superelasticity of Ti – Nb binary alloys // Acta Mater. 2006. V. 54. P. 2419 – 2429.

Miyazaki S., Kim H. Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Mater. Sci. Eng. A. 2006. V. 438 – 440. P. 18 – 24.

Biesiekierski A., Lin J., Li Y. et al. Investigations into Ti – (Nb, Ta) – Fe alloys for biomedical applications // Acta Biomater. 2016. V. 32. P. 336 – 347.

Song Y., Xu D. S., Yang R. et al. Theoretical study of the effects of alloying elements on the strength and modulus of -type bio-titanium alloys // Mater. Sci. Eng. A. 1999. V. 260. P. 269 – 274.

Hagihara K., Nakano T., Maki H. et al. Isotropic plasticity of -type Ti – 29Nb – 13Ta – 4.6Zr alloy single crystals for the development of single crystalline -Ti implants // Sci. Reports. 2016. V. 6. P. 1 – 11.

Petrzhik M. I., Fedotov S. G., Kovneristyi N. F. Effect of thermal cycling on the structure of quenched alloys of the Ti – Ta – Nb system // Met. Sci. Heat Treat. 1992. V. 34. P. 190 – 193.

Moffat D. L., Kattner U. R. Stable and metastable Ti – Nb phase diagrams // Metall. Trans. A, Phys. Metall. Mater. Sci. A. 1988. V. 19. P. 2389 – 2397.

Luo J. P., Sun J. F., Huang Y. J. et al. Low-modulus biomedical Ti – 30Nb – 5Ta – 3Zr additively manufactured by Selective Laser Melting and its biocompatibility // Mater. Sci. Eng. C. 2019. V. 97. P. 275 – 284.

Batalha R. L., Pinotti V. E., Alnoaimy O. O. S. et al. Microstructure and properties of TiB2-reinforced Ti – 35Nb – 7Zr – 5Ta processed by laser-powder bed fusion // J. Mater. Res. 2022. V. 37. P. 259 – 271.

Luo X., Yang C., Li R. Y. et al. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of -type TiNbZrTa alloys fabricated by laser powder bed fusion // Biomater. Adv. 2022. V. 133. Art. 112625.

Zhenhuan W., Yu D., Junsi L. et al. Physiochemical and biological evaluation of SLM-manufactured Ti – 10Ta – 2Nb – 2Zr alloy for biomedical implant applications // Biomed. Mater. 2020. V. 15. Art. 045017.

Zhao D., Han C., Li Y. et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting // J. Alloys Compd. 2019. V. 804. P. 288 – 298.

Sing S. L., Yeong W. Y., Wiria F. E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties // J. Alloys Compd. 2016. V. 660. P. 461 – 470.

Ackers M. A., Messé O. M. D. M., Manninen N. et al. Additive manufacturing of TTFNZ (Ti – 4.5Ta – 4Fe – 7.5Nb – 6Zr), a novel metastable -titanium alloy for advanced engineering applications // J. Alloys Compd. 2022. V. 920. Art. 165899.

Fischer M., Joguet D., Robin G. et al. In situ elaboration of a binary Ti – 26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders // Mater. Sci. Eng. C. 2016. V. 62. P. 852 – 859.

Schwab H., Prashanth K. G., Löber L. et al. Selective Laser Melting of Ti — 45 Nb Alloy // Met. 2015. V. 5. P. 686 – 694.

Guo S., Meng Q., Zhao X. et al. Design and fabrication of a metastable -type titanium alloy with ultralow elastic modulus and high strength // Sci. Reports. 2015. V. 5, Is. 5. Art. 14688.

Kopova I., Stráský J., Harcuba P. et al. Newly developed Ti – Nb – Zr – Ta – Si – Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility // Mater. Sci. Eng. C. 2016. V. 60. P. 230 – 238.

Nnamchi P. S., Obayi C. S., Todd I. Mechanical and electrochemical characterisation of new Ti – Mo – Nb – Zr alloys for biomedical applications // J. Mech. Behav. Biomed. Mater. 2016. V. 60. P. 68 – 77.

Zhang L. C., Klemm D., Eckert J. et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti – 24Nb – 4Zr – 8Sn alloy // Scr. Mater. 2011. V. 65. P. 21 – 24.

Kolli R. P., Devaraj A. A Review of metastable beta titanium alloys // Metals. 2018. V. 8. Art. 506.

Zhou L., Yuan T., Tang J. et al. Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting — A comparison between nearly  titanium,  titanium and  +  titanium // Opt. Laser Technol. 2019. V. 119. Art. 105625.

Speirs M., Van Humbeeck J., Schrooten J. et al. The effect of pore geometry on the mechanical properties of selective laser melted Ti – 13Nb – 13Zr scaffolds // Procedia CIRP 2013. V. 5. P. 79 – 82.

Liu Y. J., Wang H. L., Li S. J. et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting // Acta Mater. 2017. V. 126. P. 58 – 66.

Inaekyan K., Brailovski V., Prokoshkin S. et al. Comparative study of structure formation and mechanical behavior of age-hardened Ti – Nb – Zr and Ti – Nb – Ta shape memory alloys // Mater. Charact. 2015. V. 103. P. 65 – 74.

Dubinskiy S., Brailovski V., Prokoshkin S. et al. Structure and properties of Ti – 19.7Nb – 5.8Ta shape memory alloy subjected to thermomechanical processing including aging // J. Mater. Eng. Perform. 2013. V. 22. P. 2656 – 2664.

Prokoshkin S., Brailovski V., Korotitskiy A. et al. Formation of nanostructures in thermomechanically-treated Ti – Ni and Ti – Nb – (Zr, Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior // J. Alloys Compd. 2013. V. 577. P. S418 – S422.

Naghavi S. A., Tamaddon M., Garcia-Souto P. et al. A novel hybrid design and modelling of a customised graded Ti – 6Al – 4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis // Front. Bioeng. Biotechnol. 2023. V. 11. Art. 1092361.

Bobbert F. S. L., Lietaert K., Eftekhari A. A. et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties // Acta Biomater. 2017. V. 53. P. 572 – 584.

Chen L. Y., Liang S. X., Liu Y. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges // Mater. Sci. Eng. R. Reports. 2021. V. 146. Art. 100648.

Chakkravarthy V., Jose S. P., Lakshmanan M. et al. Additive manufacturing of novel Ti – 30Nb – 2Zr biomimetic scaffolds for successful limb salvage // Mater. Today Proc. 2022. V. 64. P. 1711 – 1716.

Lin H. Qin, Ling J. Feng, Chen W. Min et al. High-throughput determination of mechanical and diffusion properties of Ti – Ta – Fe alloys // Trans. Nonferrous Met. Soc. China. 2022. V. 32. P. 3963 – 3972.

Bandyopadhyay A., Mitra I., Shivaram A. et al. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration // Addit. Manuf. 2019. V. 28. P. 259 – 266.

Levine B. R., Sporer S., Poggie R. A. et al. Experimental and clinical performance of porous tantalum in orthopedic surgery // Biomaterials 2006. V. 27. P. 4671 – 4681.

Gurel S., Nazarahari A., Canadinc D. et al. Assessment of biocompatibility of novel TiTaHf-based high entropy alloys for utility in orthopedic implants // Mater. Chem. Phys. 2021. V. 266. Art. 124573.

Qian H., Lei T., Lei P., Hu Y. Additively manufactured tantalum implants for repairing bone defects: a systematic review // https: Home.Liebertpub.Com/Teb. 2021. V. 27. P. 166 – 180.

Zhu Y., Gu Y., Qiao S. et al. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/ nano-structured titanium // J. Biomed. Mater. Res. Part A 2017. V. 105. P. 871 – 878.

Zhou Z., Liu D. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration // Colloids Surfaces B Biointerfaces. 2022. V. 215. Art. 112491.

Zhou L. Bo, Shu J. Guo, Sun J. Shan et al. Effects of tantalum addition on microstructure and properties of titanium alloy fabricated by laser powder bed fusion // J. Cent. South Univ. 2021. V. 28. P. 1111 – 1128.

Thijs L., Montero Sistiaga M. L., Wauthle R. et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum // Acta Mater. 2013. V. 61. P. 4657 – 4668.

Sing S. L., Huang S., Goh G. D. et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion // Prog. Mater. Sci. 2021. V. 119. Art. 100795.

Wang J., Liu Y., Rabadia C. D. et al. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti – 35Nb alloy produced from an elemental powder mixture // J. Mater. Sci. Technol. 2021. V. 61. P. 221 – 233.

Kong W., Cox S. C., Lu Y. et al. The influence of zirconium content on the microstructure, mechanical properties, and biocompatibility of in-situ alloying Ti – Nb – Ta based  alloys processed by selective laser melting // Mater. Sci. Eng. C 2021. V. 131. Art. 112486.

Soro N., Attar H., Brodie E., Veidt M. et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti – 25Ta alloy for load-bearing implant applications // J. Mech. Behav. Biomed. Mater. 2019. V. 97. P. 149 – 158.

Brodie E. G., Richter J., Wegener T. et al. Influence of a remelt scan strategy on the microstructure and fatigue behaviour of additively manufactured biomedical Ti65Ta efficiently assessed using small scale specimens // Int. J. Fatigue 2022. V. 162. Art. 106944.

Brodie E. G., Wegener T., Richter J. et al. A mechanical comparison of alpha and beta phase biomedical TiTa lattice structures // Mater. Des. 2021. V. 212. Art. 110220.




DOI: https://doi.org/10.30906/mitom.2024.6.37-47


© Издательский дом «Фолиум», 1998–2024