Получение медицинских титановых сплавов со сниженным модулем упругости методом селективного лазерного плавления. Обзор
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Попович А. А. Аддитивные технологии как новый способ создания перспективных функциональных материалов // МиТОМ. 2020. № 1. С. 19 – 25.
Saptarshi S. M., Zhou C. Basics of 3D printing: engineering aspects // 3D Print. Orthop. Surg. 2019. P. 17 – 30.
Yarikov A. V., Gorbatov R. O., Denisov A. A. et al. Application of additive 3d printing technologies in neurosurgery, vertebrology and traumatology and orthopedics // J. Clin. Pract. 2021. V. 12. P. 90 – 104.
Попович А. А., Суфияров В. Ш., Полозов И. А. и др. Применение аддитивных технологий для изготовления индивидуальных компонентов эндопротеза тазобедренного сустава из титановых сплавов // Медицинская техника. 2016. № 3. С. 43 – 46.
Choi S., Kang Y. S., Yeo I. S. L. Influence of implant–abutment connection biomechanics on biological response: a literature review on interfaces between implants and abutments of titanium and zirconia // Prosthes. 2023. V. 5. P. 527 – 538.
Weinans H., Huiskes R., Grootenboer H. J. Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling // J. Biomech. Eng. 1994. V. 116. P. 393 – 400.
Tokgoz E., Levitt S., Sosa D. et al. Complications of total knee arthroplasty // Total Knee Arthroplast. 2023. P. 71 – 93.
Ali S., Abdul Rani A. M., Baig Z. et al. Biocompatibility and corrosion resistance of metallic biomaterials // Corros. Rev. 2020. V. 38. P. 381 – 402.
Zhang L. C., Chen L. Y. A Review on biomedical titanium alloys: recent progress and prospect // Adv. Eng. Mater. 2019. V. 21. Art. 1801215.
Venugopalan R., Wu M. H. Medical Device Materials III: Proceedings from the Materials & Processes for Medical Devices Conference 2005. November 14 – 16, 2005. Boston, Massachusetts, USA. 2006. 250 p.
Fleps I., Bahaloo H., Zysset P. K. et al. Empirical relationships between bone density and ultimate strength: A literature review // J. Mech. Behav. Biomed. Mater. 2020. V. 110. Art. 103866.
Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods // Sci. Technol. Adv. Mater. 2003. V. 4. P. 445 – 454.
Niinomi M., Hattori T., Morikawa K. et al. Development of low rigidity -type titanium alloy for biomedical applications // Mater. Trans. 2002. V. 43. P. 2970 – 2977.
Chen L. Y., Cui Y. W., Zhang L. C. Recent development in beta titanium alloys for biomedical applications // Metals. 2020. V. 10, Is. 9. Art. 1139.
Wapner K. L. Implications of metallic corrosion in total knee arthroplasty // Clin. Orthop. Relat. Res. 1991. V. 271. P. 12 – 20.
Domingo J. L. Vanadium: A review of the reproductive and developmental toxicity // Reprod. Toxicol. 1996. V. 10. P. 175 – 182.
Olaolorun F. A., Olopade F. E., Usende I. L. et al. Neurotoxicity of vanadium // Adv. Neurotoxicology 2021. V. 5. P. 299 – 327.
Bondy S. C. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration // Neurotoxicology. 2016. V. 52. P. 222 – 229.
Wang X., Speirs M., Kustov S. et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect // Scr. Mater. 2018. V. 146. P. 246 – 250.
Farber E., Orlov A., Borisov E. et al. TiNi alloy lattice structures with negative poisson’s ratio: computer simulation and experimental results // Metals. 2022. V. 12. Art. 1476.
Genchi G., Carocci A., Lauria G. et al. Nickel: human health and environmental toxicology // Int. J. Environ. Res. Public Heal. 2020. V. 17. Art. 679.
Safavi M. S., Bordbar-Khiabani A., Walsh F. C. et al. Surface modified NiTi smart biomaterials: Surface engineering and biological compatibility // Curr. Opin. Biomed. Eng. 2023. V. 25. Art. 100429.
Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti – 29Nb – 13Ta – 4.6Zr // Biomaterials 2003. V. 24. P. 2673 – 2683.
Kim H. Y., Ikehara Y., Kim J. I. et al. Martensitic transformation, shape memory effect and superelasticity of Ti – Nb binary alloys // Acta Mater. 2006. V. 54. P. 2419 – 2429.
Miyazaki S., Kim H. Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Mater. Sci. Eng. A. 2006. V. 438 – 440. P. 18 – 24.
Biesiekierski A., Lin J., Li Y. et al. Investigations into Ti – (Nb, Ta) – Fe alloys for biomedical applications // Acta Biomater. 2016. V. 32. P. 336 – 347.
Song Y., Xu D. S., Yang R. et al. Theoretical study of the effects of alloying elements on the strength and modulus of -type bio-titanium alloys // Mater. Sci. Eng. A. 1999. V. 260. P. 269 – 274.
Hagihara K., Nakano T., Maki H. et al. Isotropic plasticity of -type Ti – 29Nb – 13Ta – 4.6Zr alloy single crystals for the development of single crystalline -Ti implants // Sci. Reports. 2016. V. 6. P. 1 – 11.
Petrzhik M. I., Fedotov S. G., Kovneristyi N. F. Effect of thermal cycling on the structure of quenched alloys of the Ti – Ta – Nb system // Met. Sci. Heat Treat. 1992. V. 34. P. 190 – 193.
Moffat D. L., Kattner U. R. Stable and metastable Ti – Nb phase diagrams // Metall. Trans. A, Phys. Metall. Mater. Sci. A. 1988. V. 19. P. 2389 – 2397.
Luo J. P., Sun J. F., Huang Y. J. et al. Low-modulus biomedical Ti – 30Nb – 5Ta – 3Zr additively manufactured by Selective Laser Melting and its biocompatibility // Mater. Sci. Eng. C. 2019. V. 97. P. 275 – 284.
Batalha R. L., Pinotti V. E., Alnoaimy O. O. S. et al. Microstructure and properties of TiB2-reinforced Ti – 35Nb – 7Zr – 5Ta processed by laser-powder bed fusion // J. Mater. Res. 2022. V. 37. P. 259 – 271.
Luo X., Yang C., Li R. Y. et al. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of -type TiNbZrTa alloys fabricated by laser powder bed fusion // Biomater. Adv. 2022. V. 133. Art. 112625.
Zhenhuan W., Yu D., Junsi L. et al. Physiochemical and biological evaluation of SLM-manufactured Ti – 10Ta – 2Nb – 2Zr alloy for biomedical implant applications // Biomed. Mater. 2020. V. 15. Art. 045017.
Zhao D., Han C., Li Y. et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting // J. Alloys Compd. 2019. V. 804. P. 288 – 298.
Sing S. L., Yeong W. Y., Wiria F. E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties // J. Alloys Compd. 2016. V. 660. P. 461 – 470.
Ackers M. A., Messé O. M. D. M., Manninen N. et al. Additive manufacturing of TTFNZ (Ti – 4.5Ta – 4Fe – 7.5Nb – 6Zr), a novel metastable -titanium alloy for advanced engineering applications // J. Alloys Compd. 2022. V. 920. Art. 165899.
Fischer M., Joguet D., Robin G. et al. In situ elaboration of a binary Ti – 26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders // Mater. Sci. Eng. C. 2016. V. 62. P. 852 – 859.
Schwab H., Prashanth K. G., Löber L. et al. Selective Laser Melting of Ti — 45 Nb Alloy // Met. 2015. V. 5. P. 686 – 694.
Guo S., Meng Q., Zhao X. et al. Design and fabrication of a metastable -type titanium alloy with ultralow elastic modulus and high strength // Sci. Reports. 2015. V. 5, Is. 5. Art. 14688.
Kopova I., Stráský J., Harcuba P. et al. Newly developed Ti – Nb – Zr – Ta – Si – Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility // Mater. Sci. Eng. C. 2016. V. 60. P. 230 – 238.
Nnamchi P. S., Obayi C. S., Todd I. Mechanical and electrochemical characterisation of new Ti – Mo – Nb – Zr alloys for biomedical applications // J. Mech. Behav. Biomed. Mater. 2016. V. 60. P. 68 – 77.
Zhang L. C., Klemm D., Eckert J. et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti – 24Nb – 4Zr – 8Sn alloy // Scr. Mater. 2011. V. 65. P. 21 – 24.
Kolli R. P., Devaraj A. A Review of metastable beta titanium alloys // Metals. 2018. V. 8. Art. 506.
Zhou L., Yuan T., Tang J. et al. Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting — A comparison between nearly titanium, titanium and + titanium // Opt. Laser Technol. 2019. V. 119. Art. 105625.
Speirs M., Van Humbeeck J., Schrooten J. et al. The effect of pore geometry on the mechanical properties of selective laser melted Ti – 13Nb – 13Zr scaffolds // Procedia CIRP 2013. V. 5. P. 79 – 82.
Liu Y. J., Wang H. L., Li S. J. et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting // Acta Mater. 2017. V. 126. P. 58 – 66.
Inaekyan K., Brailovski V., Prokoshkin S. et al. Comparative study of structure formation and mechanical behavior of age-hardened Ti – Nb – Zr and Ti – Nb – Ta shape memory alloys // Mater. Charact. 2015. V. 103. P. 65 – 74.
Dubinskiy S., Brailovski V., Prokoshkin S. et al. Structure and properties of Ti – 19.7Nb – 5.8Ta shape memory alloy subjected to thermomechanical processing including aging // J. Mater. Eng. Perform. 2013. V. 22. P. 2656 – 2664.
Prokoshkin S., Brailovski V., Korotitskiy A. et al. Formation of nanostructures in thermomechanically-treated Ti – Ni and Ti – Nb – (Zr, Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior // J. Alloys Compd. 2013. V. 577. P. S418 – S422.
Naghavi S. A., Tamaddon M., Garcia-Souto P. et al. A novel hybrid design and modelling of a customised graded Ti – 6Al – 4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis // Front. Bioeng. Biotechnol. 2023. V. 11. Art. 1092361.
Bobbert F. S. L., Lietaert K., Eftekhari A. A. et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties // Acta Biomater. 2017. V. 53. P. 572 – 584.
Chen L. Y., Liang S. X., Liu Y. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges // Mater. Sci. Eng. R. Reports. 2021. V. 146. Art. 100648.
Chakkravarthy V., Jose S. P., Lakshmanan M. et al. Additive manufacturing of novel Ti – 30Nb – 2Zr biomimetic scaffolds for successful limb salvage // Mater. Today Proc. 2022. V. 64. P. 1711 – 1716.
Lin H. Qin, Ling J. Feng, Chen W. Min et al. High-throughput determination of mechanical and diffusion properties of Ti – Ta – Fe alloys // Trans. Nonferrous Met. Soc. China. 2022. V. 32. P. 3963 – 3972.
Bandyopadhyay A., Mitra I., Shivaram A. et al. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration // Addit. Manuf. 2019. V. 28. P. 259 – 266.
Levine B. R., Sporer S., Poggie R. A. et al. Experimental and clinical performance of porous tantalum in orthopedic surgery // Biomaterials 2006. V. 27. P. 4671 – 4681.
Gurel S., Nazarahari A., Canadinc D. et al. Assessment of biocompatibility of novel TiTaHf-based high entropy alloys for utility in orthopedic implants // Mater. Chem. Phys. 2021. V. 266. Art. 124573.
Qian H., Lei T., Lei P., Hu Y. Additively manufactured tantalum implants for repairing bone defects: a systematic review // https: Home.Liebertpub.Com/Teb. 2021. V. 27. P. 166 – 180.
Zhu Y., Gu Y., Qiao S. et al. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/ nano-structured titanium // J. Biomed. Mater. Res. Part A 2017. V. 105. P. 871 – 878.
Zhou Z., Liu D. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration // Colloids Surfaces B Biointerfaces. 2022. V. 215. Art. 112491.
Zhou L. Bo, Shu J. Guo, Sun J. Shan et al. Effects of tantalum addition on microstructure and properties of titanium alloy fabricated by laser powder bed fusion // J. Cent. South Univ. 2021. V. 28. P. 1111 – 1128.
Thijs L., Montero Sistiaga M. L., Wauthle R. et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum // Acta Mater. 2013. V. 61. P. 4657 – 4668.
Sing S. L., Huang S., Goh G. D. et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion // Prog. Mater. Sci. 2021. V. 119. Art. 100795.
Wang J., Liu Y., Rabadia C. D. et al. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti – 35Nb alloy produced from an elemental powder mixture // J. Mater. Sci. Technol. 2021. V. 61. P. 221 – 233.
Kong W., Cox S. C., Lu Y. et al. The influence of zirconium content on the microstructure, mechanical properties, and biocompatibility of in-situ alloying Ti – Nb – Ta based alloys processed by selective laser melting // Mater. Sci. Eng. C 2021. V. 131. Art. 112486.
Soro N., Attar H., Brodie E., Veidt M. et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti – 25Ta alloy for load-bearing implant applications // J. Mech. Behav. Biomed. Mater. 2019. V. 97. P. 149 – 158.
Brodie E. G., Richter J., Wegener T. et al. Influence of a remelt scan strategy on the microstructure and fatigue behaviour of additively manufactured biomedical Ti65Ta efficiently assessed using small scale specimens // Int. J. Fatigue 2022. V. 162. Art. 106944.
Brodie E. G., Wegener T., Richter J. et al. A mechanical comparison of alpha and beta phase biomedical TiTa lattice structures // Mater. Des. 2021. V. 212. Art. 110220.
DOI: https://doi.org/10.30906/mitom.2024.6.37-47
© Издательский дом «Фолиум», 1998–2024