Особенности структуры и разрушения сплава Inconel 718, изготовленного методом электронно-лучевого сплавления
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Sims Ch., Hagel W. The superalloys. New York: Wiley, 1974. 568 p.
Колачев Б. А., Ливанов В. А., Елагин В. И. Металловедение и термическая обработка цветных металлов и сплавов. М.: Металлургия, 1981. 416 с.
Ezugwu E., Wang Z., Machado A. The machinability of nickel-based alloys: a review // J. Mater. Process. Technol. 1999. V. 86, Is. 1 – 3. P. 1 – 16. DOI: 10.1016/ S0924-0136(98)00314-8
Sui S., Chen J., Zhang R. et al. The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure // Mater. Sci. Eng. A. 2017. V. 688. P. 480 – 487. DOI: 10.1016/j.msea.2017.01.110
Wan H., Zhou Z. J., Li C. P. et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting // J. Mater. Process. Technol. 2018. V. 10, Is. 34. P. 1799 – 1804. DOI: 10.1016/ j.jmst.2018.02.002
Tucho W. M., Cuvillier P., Sjolyst-Kverneland A., Hansen V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment // Mater. Sci. Eng. A. 2017. V. 689. P. 220 – 232. DOI: 10.1016/j.msea.2017.02.062
Zhao X., Rashid A., Strondl A. et al. Role of superficial defects and machining depth in tensile properties of electron beam melting (EBM) made Inconel 718 // J. Mater. Eng. Perform. 2021. V. 30, Is. 6. P. 1 – 11. DOI: 10.1007/s11665-021-05487-9
Nunes R. M., Pereira D., Clarke T. et al. Delta phase characterization in Inconel 718 alloys through x-ray diffraction // ISIJ International. 2015. V. 55, Is. 11. P. 2450 – 2454. DOI: 10.2355/isijinternational.ISIJINT-2015-111
Donachie M. J., Donachie S. J., James S. Superalloys: a Technical Guide. ASM International, 2002. 439 p. DOI: 10.31399/asm.tb.stg2.9781627082679
Amato K. N., Gaytan S. M., Murr L. E. et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting // Acta Mater. 2012. V. 60, Is. 5. P. 2229 – 2239. DOI: 10.1016/j.actamat.2011.12.032
Hong J. K., Park J. H., Park N. K. et al. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding // J. Mater. Process. Technol. 2008. V. 201, Is. 1. P. 515 – 520. DOI: 10.1016/j.jmatprotec.2007.11.224
Рашковец М., Никулина А., Бабкин К. и др. Исследование фазового состава никелевого сплава Inconel 718, полученного аддитивной технологией // Обработка материалов (технология, оборудование, инструменты). 2020. № 22(3). С. 69 – 81. DOI: 10.17212/1994-6309-2020-22.3-69-81
Dong X., Zhang X., Du K., Zhou Yi. Microstructure of carbides at grain boundaries in nickel based superalloys // J. Mater. Sci. Technol. 2012. V. 28, Is. 11. P. 1031 – 1038. DOI: 10.1016/S1005-0302(12)60169-8
Krakow R., Johnstone D. N., Eggeman A. S. et al. On the crystallography and composition of topologically close-packed phases in ATI 718 Plus // Acta Mater. 2017. V. 130. P. 271 – 280. DOI: 10.1016/j. actamat.2017.03.038
Weldek S. T., Fielder R. D. Superalloys 718, 625, 706 and various derivatives // In: Proceedings of the International Symposium on Superalloys. Warrandale, PA, 1994. P. 167 – 176.
Appa Rao G., Kumar M., Srinivas M., Sarma D. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 // Mater. Sci. Eng. A. 2003. V. 355, Is. 1 – 2. P. 114 – 125. DOI: 10.1016/S0921-5093(03)00079-0
Mclouth T. D., Bean G. E., Witkin D. B. et al. The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting // Mater. Des. 2018. V. 149. P. 205 – 213. DOI: 10.1016/j.matdes.2018.04.019
Jia Q., Gu D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties // J. Alloy. Compd. 2014. V. 585. P. 713 – 721. DOI: 10.1016/j.jallcom.2013.09.171
Wang H., Wang L., Cui R. et al. Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool // J. Mater. Res. Technol. 2020. V. 9, Is. 5. P. 10401 – 10410. DOI: 10.1016/j.jmrt.2020.07.029
Popovich V. A., Borisov E. V., Popovich A. A. et al. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties // Mater. Des. 2016. V. 114. P. 441 – 449. DOI: 10.1016/j.matdes.2016.10.075
Brown A. R., Radavich J. F., Stinner P. Superalloys 718, 625, 706 and various derivatives // In: Proceedings of the International Symposium on Superalloys. Warrandale, PA, 1989. P. 623 – 629.
Sugihara T., Enomoto T. High speed machining of Inconel 718 focusing on tool surface topography of CBN tool // Procedia Manuf. 2015. V. 1, Is. 1 – 4. P. 675 – 682. DOI: 10.1016/ j.promfg.2015.09.010
Rana K., Rinaldi S., Imbrogno S. et al. 2D FE prediction of surface alteration of inconel 718 under machining condition // Procedia CIRP. 2016. V. 45. P. 227 – 230. DOI:10.1016/ j.procir.2016.02.346
Costes J. P., Guillet Y., Poulachon G., Dessoly M. Tool-life and wear mechanisms of CBN tools in machining of inconel 718 // Int. J. Mach. Tools Manuf. 2007. V. 47, Is. 7 – 8. P. 1081 – 1087. DOI: 10.1016/j.ijmachtools. 2006.09.031
Parida A. K., Maity K. Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation // Eng. Sci. Technol. Int. J. 2018. V. 21, Is. 3. P. 364 – 370. DOI: 10.1016/j.jestch.2018.03.018
Vaezi M., Seitz H., Yang S. F. A review on 3D micro-additive manufacturing technologies // Int. J. Adv. Manuf. Technol. 2012. V. 67, Is. 5 – 8. P. 1721 – 1754. DOI: 10.1007/ s00170-012-4605-2
Sames W. J., Unocic K. A., Dehoff R. R. et al. Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting // J. Mater. Res. 2014. V. 29, Is. 17. P. 1920 – 1930. DOI: 10.1557/jmr.2014.140
Tammas-Williams S., Zhao H., Leonard F. et al. XCT analysis of the influence of melt strategies on defect population in Ti – 6Al – 4V components manufactured by selective electron beam melting // Mater. Charact. 2015. V. 102. P. 47 – 61. DOI: 10.1016/j.matchar.2015.02.008
Wang F., Williams S., Colegrove P., Antonysamy A. A. Microstructure and mechanical properties of wire and arc additive manufactured Ti — 6Al — 4V // Metall. Mater. Trans. A. 2012. V. 44, Is. 2. P. 968 – 977. DOI: 10.1007/ s11661-012-1444-6
Antonysamy A. A., Prangnell P. B., Meyer J. Effect of wall thickness transitions on texture and grain structure in additive layer manufactured (ALM) of Ti – 6Al – 4V // Mater. Sci. Forum. 2012. V. 706 – 709. P. 205 – 210. DOI: 10.4028/www.scientific.net/MSF.706-709.205
Wang Z., Guan K., Gao M. et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting // J. Alloy. Compd. 2012. V. 513. P. 518 – 523. DOI: 10.1016/j.jallcom.2011.10.107
Hilaire A., Andrieu E., Wu X. High-temperature mechanical properties of alloy 718 produced by laser powder bed fusion with different processing parameters // Addit. Manuf. 2019. V. 26. P. 147 – 160. DOI: 10.1016/j.addma.2019.01.012
Gribbin S., Bicknell J., Jorgensen L. et al. Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718 // Int. J. Fatigue. 2016. V. 93. P. 156 – 167. DOI: 10.1016/ j.ijfatigue.2016.08.019
Kirka M. M. Current Research at ORNL: High Temperature Alloy Development and Process Monitoring, 2017.
Knapp G. L., Raghavan N., Plotkowski A., DebRoy T. Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing // Addit. Manuf. 2019. V. 25. P. 511 – 521. DOI: 10.1016/j.addma.2018.12.001
Price S., Cheng B., Lydon J. et al. On process temperature in powder-bed electron beam additive manufacturing: process parameter effects // J. Manuf. Sci. Eng. 2014. V. 136, Is. 6. P. 061019. DOI: 10.1115/1.4028485
Kirka M. M., Greeley D. A., Hawkins C., Dehoff R. R. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting // Int. J. Fatigue. 2017. V. 105. P. 235 – 243. DOI: 10.1016/j.ijfatigue. 2017.08.021
Sames W. J., Unocic K. A., Helmreich G. W. et al. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing // Addit. Manuf. 2017. V. 13. P. 156 – 165. DOI: 10.1016/j.addma. 2016.09.001
Kirka M. M., Medina F., Dehoff R., Okello A. Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process // Mater. Sci. Eng. A. 2017. V. 680. P. 338 – 346. DOI: 10.1016/j.msea.2016.10.069
Deng D., Moverare J., Peng R. L., Söderberg H. Microstructure and anisotropic mechanical properties of EBM manufactured Inconel 718 and effects of post heat treatments // Mater. Sci. Eng. A. 2017. V. 693. P. 151 – 163. https://doi.org/ 10.1016/j.msea.2017.03.085
Zhao X., Dadbakhsh S., Rashid A. Contouring strategies to improve the tensile properties and quality of EBM printed Inconel 625 parts // J. Manuf. Process. 2021. V. 62. P. 418 – 429. DOI: 10.1016/j.jmapro.2020.12.007
Prabhakar P., Sames W. J., Dehoff R., Babu S. S. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 // Addit. Manuf. 2015. V. 7. P. 83 – 91. DOI: 10.1016/j.addma.2015.03.003
DOI: https://doi.org/10.30906/mitom.2024.5.48-55
© Издательский дом «Фолиум», 1998–2024