Влияние температуры аустемперинга на коррозионное поведение бейнитной Fe – Ni-стали с добавкой Al для железнодорожных путей
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Yates J. Innovation in rail steel // Science in Parliament. 1996. V. 53. P. 2 – 3.
Yokoyama H., Mitao S., Yamamoto S. et al. High strength bainitic steel rails for heacy haul railways with superior damage resistance // NKK Technical Review. 2001. V. 84. P. 44 – 51.
Kapito A., Stumpf W., Papo M. J. On the development of bainitic alloys for railway wheel applications // J. South. Afr. Ins. Min. Metall. 2012. V. 112. P. 539 – 544.
Meryanalinda, Ariati M., Citrawati F. Study on phases development and mechanical properties in a Fe – Ni – Al carbide free bainitic steel based on lateritic steel ffter warm rolling // IOP Conference Series: Materials Science and Engineering. 2019. V. 541. 012011.
Meng J., Feng Y., Zhou Q. et al. Effects of austempering temperature on strength, ductility and toughness of low-C high-Al/Si carbide-free bainitic steel // J. Mater. Eng. Perform. 2015. V. 24, Is. 8. P. 3068 – 3076.
Анастасиади Г. П., Кондратьев С. Ю., Малышевский В. А., Сильников М. В. Значение термокинетических диаграмм превращения переохлажденного аустенита для разработки режимов термической обработки ответственных стальных деталей // МиТОМ. 2016. № 11(737). С. 16 – 22. (Anastasiadi G. P., Kondrat’ev S. Yu., Malyshevskii V. A., Sil’nikov M. V. Importance of thermokinetic diagrams of transformation of supercooled austenite for development of heat treatment modes for critical steel parts // Met. Sci. Heat Treat. 2017. V. 58, Is. 11. P. 656 – 661.)
Горынин В. И., Кондратьев С. Ю., Оленин М. И., Рогожкин В. В. Концепция карбидного конструирования сталей повышенной хладостойкости // МиТОМ. 2014. № 10(712). С. 32 – 38. (Gorynin V. I., Kondrat’ev S. Yu., Olenin M. I., Rogozhkin V. V. A Concept of carbide design of steels with improved cold resistance // Met. Sci. Heat Treat. 2015. V. 56, Is. 9 – 10. P. 548 – 554.)
Zhu K., Mager C., Huang M. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels // J. Mater. Sci. Technol. 2017. V. 33, Is. 12. P. 1475 – 1486.
Tian J.-y., Xu G., Zhou M.-x. et al. Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels // J. Iron Steel Res. Int. 2019. V. 26, Is. 8. P. 846 – 855.
Xu W., Zhang B., Deng Y. et al. Corrosion of rail tracks and their protection // Corros. Rev. 2021. V. 39, Is. 1. P. 1 – 13.
Robles Hernбndez F. C., Plascencia G., Koch K. Rail base corrosion problem for North American transit systems // Eng. Fail. Anal. 2009. V. 16, Is. 1. P. 281 – 294.
Isozaki H., Oosawa J., Kawano Y. et al. Measures against electrolytic rail corrosion in Tokyo Metro Subway tunnels // Procedia Engineering. 2016. V. 165. P. 583 – 592.
Rohmah M., Anwar M. S., Roberto R. et al. Corrosion behavior of a predeformed Fe – Ni lateritic steel with bainite structure // Key Engineering Materials. 2020. V. 867. P. 8 – 16.
Katiyar P. K., Misra S., Mondal K. Comparative corrosion behavior of five microstructures (pearlite, bainite, spheroidized, martensite, and tempered martensite) made from a high carbon steel // Metall. Mater. Trans. A. 2019. V. 50, Is. 3. P. 1489 – 1501.
Neetu, Katiyar P. K., Sangal S. et al. Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels // Corros. Sci. 2021. V. 178. P. 109043.
Moon A. P., Sangal S., Layek S. et al. Corrosion behavior of high-strength bainitic rail steels // Metall. Mater. Trans. A. 2015. V. 46, Is. 4. P. 1500 – 1518.
Moon A. P., Chandra Sekhar K., Mahanty S. et al. Corrosion behavior of newly developed high-strength bainitic railway wheel steels // J. Mater. Eng. Perform. 2020. V. 29, Is. 5. P. 3443 – 3459.
Van Bohemen S. M. C. Bainite and martensite start temperature calculated with exponential carbon dependence // Mater. Sci. Technol. 2012. V. 28. 4. P. 487 – 495.
Okaguchi S., Ohtani H., Ohmori Y. Morphology of widmanstatten and bainitic ferrites // Mater. Trans., JIM. 1991. V. 32, Is. 8. P. 697 – 704.
Ohtani H., Okaguchi S., Fujishiro Y. et al. Morphology and properties of low-carbon bainite // Metall. Trans. A. 1990. V. 21, Is. 3. P. 877 – 888.
Yudin Y. V., Maisuradze M. V., Kuklina A. A. A study of the microstructure of bainite in steel 25G2S2N2MA by the method of atomic force microscopy // Met. Sci. Heat Treat. 2018. V. 60, Is. 7. P. 427 – 432.
Atapek S. H., Polat Є., Zor S. Effect of tempering temperature and microstructure on the corrosion behavior of a tempered steel // Prot. Met. Phys. Chem. Surf. 2013. V. 49, Is. 2. P. 240 – 246.
Hernбndez H. H., Reynoso A. M. R., Gonzбlez J. C. T. et al. Electrochemical impedance spectroscopy (EIS): A review study of basic aspects of the corrosion mechanism applied to steels / In book: Electrochemical impedance spectroscopy, ed. 1: IntechOpen. 2020. DOI: 10.5772/intechopen.94470
Song D., Hao J., Yang F. et al. Corrosion behavior and mechanism of Cr – Mo alloyed steel: Role of ferrite/bainite duplex microstructure // J. Alloy. Compd. 2019. V. 809. 151787.
DOI: https://doi.org/10.30906/mitom.2024.4.59-67
© Издательский дом «Фолиум», 1998–2024