Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Современные методы создания и применения порошковых ферритно-мартенситных ДУО сталей

В. Ш. Суфияров, Н. Г. Разумов, А. К. Мазеева, Л. В. Разумова, А. А. Попович

Аннотация


Рассмотрены особенности процесса синтеза ферритно-мартенситных дисперсно-упрочненных оксидами сталей (ДУО-сталей) методами порошковой металлургии и лазерных технологий. Описана технология изготовления ДУО-сталей. Проанализированы свойства сталей и возможности их аддитивного производства.


Ключевые слова


аддитивное производство; 3D-печать; конструкционные стали; ДУО-стали; порошковая металлургия; композиционные материалы

Полный текст:

PDF

Литература


Getto E. et al. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels // J. Nucl. Mater. 2016. V. 480. P. 159 – 176.

Чернов И. И., Углов В. В., Калин Б. А. и др. Конструкционные и функциональные материалы ядерных энергетических установок. Минск: Высшая школа. 2021. 239 с.

Klueh R. L., Harries D. R. High-Chromium ferritic and martensitic steels for nuclear applications. West Conshohocken. 2001. 221 p.

Xu S. et al. Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe – 9Cr – Al ODS steel with high Al addition // Mater. Sci. Eng. A. 2019. V. A739. P. 45 – 52.

Deng L. et al. Achieving excellent mechanical properties of ODS steel by Y2O3 addition // Mater. Sci. Eng. A. 2023. V. 872. 145008.

Ukai S., Yamashita S. Dislocation-climbing bypass over dispersoids with different lattice misfit in creep deformation of FeCrAl oxide dispersion-strengthened alloys // J. Mater. Res. Technol. 2022. V. 16. P. 891 – 898.

Wilms M. B. et al. Additive manufacturing of oxide-dispersion strengthened alloys: Materials, synthesis and manufacturing // Prog. Mater. Sci. 2022. V. 133, Is. 20. 101049.

Song M. et al. A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment // Acta Mater. 2016. V. 112. P. 361 – 377.

Klueh R. L., Nelson A. T. Ferritic/martensitic steels for next-generation reactors // J. Nucl. Mater. 2007. V. 371, Is. 1 – 3. P. 37 – 52.

Klueh R. L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors // Int. Mater. Rev. 2005. V. 50, Is. 5. P. 287 – 310.

Grдning T., Sridharan N. Benchmarking a 9Cr-2WVTa reduced activation ferritic martensitic steel fabricated via additive manufacturing // Metals. 2022. V. 12, Is. 2. 342.

Peng S. et al. A comparative study of microstructure and mechanical properties of ODS CrFeNi-based medium- and high-entropy alloys // J. Alloys Compd. 2022. V. 924, Is. 5. 166518.

Polat G., Tekin M., Kotan H. Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy // Intermetallics. 2022. V. 146. 107589.

Zinkle S. J. et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications // Nucl. Fusion. 2017. V. 57, Is. 9. 092005.

Zinkle S. J., Snead L. L. Designing radiation resistance in materials for fusion energy // Annu. Rev. Mater. Res. 2014. V. 44. P. 241 – 267.

Tanigawa H. et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications // Nucl. Fusion. 2017. V. 57, Is. 9. 092004.

Zinkle S. J. et al. Multimodal options for materials research to advance the basis for fusion energy in the ITER era // Nucl. Fusion. 2013. V. 53, Is. 10. 4024.

Tan L., Yang Y., Busby J. T. Effects of alloying elements and thermomechanical treatment on 9Cr Reduced Activation Ferritic-Martensitic (RAFM) steels // J. Nucl. Mater. 2013. V. 442, Is. 1 – 3. Suppl. 1. P. S13 – S17.

Rogers R. Size effects in materials due to microstructural and dimensional constraints: a comparative review // Process Saf. Environ. Prot. 1999. V. 77, Is. 6. P. 371 – 372.

Morss L. R. et al. Standard molar enthalpies of formation of Y2O3, Ho2O3, and Er2O3 at the temperature 298.15 K // Chem. Thermodyn. 1993. V. 25, Is. 3. P. 415 – 422.

Hsiung L. L., Fluss M. J., Kimura A. Structure of oxide nanoparticles in Fe – 16Cr MA/ODS ferritic steel // Mater. Lett. 2010. V. 64, Is. 16. P. 1782 – 1785.

Chen T. et al. Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation // J. Nucl. Mater. 2015. V. 467. P. 42 – 49.

Certain A. et al. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels // J. Nucl. Mater. 2013. V. 434, Is. 1 – 3. P. 311 – 321.

Ribis J. et al. Comparison of the neutron and ion irradiation response of nano-oxides in oxide dispersion strengthened materials // J. Mater. Res. 2015. V. 30, Is. 14. P. 2210 – 2221.

Schaeublin R. et al. Microstructure and mechanical properties of two ODS ferritic/martensitic steels // J. Nucl. Mater. 2002. V. 307 – 311, Is. 1. P. 778 – 782.

McClintock D. A. et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT // J. Nucl. Mater. 2009. V. 392, Is. 2. P. 353 – 359.

Yamamoto T. et al. A dual ion irradiation study of helium-dpa interactions on cavity evolution in tempered martensitic steels and nanostructured ferritic alloys // J. Nucl. Mater. 2014. V. 449, Is. 1 – 3. P. 190 – 199.

Toloczko M. B. et al. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa // J. Nucl. Mater. 2014. V. 453, Is. 1 – 3. P. 323 – 333.

Gelles D. S. Microstructural examination of commercial ferritic alloys at 200 dpa // J. Nucl. Mater. 1996. V. 233 – 237, Part 1. P. 293 – 298.

Toloczko M. B., Garner F. A., Maloy S. A. Irradiation creep and density changes observed in MA957 pressurized tubes irradiated to doses of 40 – 110 dpa at 400 – 750 °C in FFTF // J. Nucl. Mater. 2012. V. 428, Is. 1 – 3. P. 170 – 175.

Jarugula R. et al. Strengthening mechanisms in nano oxide dispersion-strengthened Fe – 18Cr ferritic steel at different temperatures // Metall. Mater. Trans. A. 2021. V. A 52, Is. 5. P. 1901 – 1912.

Hдussler D. et al. Interaction processes between dislocations and particles in the ODS nickel-base superalloy INCONEL MA754 studied by means of in situ straining in an HVEM // Mater. Sci. Eng. A. 2001. V. A309 – 310. P. 500 – 504.

Sugino Y. et al. Grain boundary sliding at high temperature deformation in cold-rolled ODS ferritic steels // J. Nucl. Mater. 2014. V. 452, Is. 1 – 3. P. 628 – 632.

Luzginova N. V. et al. Irradiation response of ODS Eurofer97 steel // J. Nucl. Mater. 2012. V. 428, Is. 1 – 3. P. 192 – 196.

Fischer F. D., Svoboda J., Fratzl P. A thermodynamic approach to grain growth and coarsening // Philos. Mag. 2003. V. 83, Is. 9. P. 1075 – 1093.

Pereira V. S. M. et al. Investigation of coarsening of oxide nanoparticles at 1400 K and its effect on the microstructure formation of an ODS Eurofer steel // Mater. Charact. 2022. V. 185, Is. 9. 111723.

Moghadasi M. A. et al. Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model // Sci. Rep. 2016. V. 6, Is. 9. 38621.

Chauhan A. et al. Microstructure characterization and strengthening mechanisms of oxide dispersion strengthened (ODS) Fe – 9 % Cr and Fe – 14 % Cr extruded bars // J. Nucl. Mater. 2017. V. 495. P. 6 – 19.

Hayashi T. et al. Creep response and deformation processes in nanocluster-strengthened ferritic steels // Acta Mater. 2008. V. 56, Is. 7. P. 1407 – 1416.

Susila P. et al. Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe – 12Cr – 2W – 0.5Y2O3 ) alloy // Mater. Sci. Eng. A. 2011. V. A528, Is. 13 – 14. P. 4579 – 4584.

Ren J. et al. Effects of Al addition on high temperature oxidation behavior of 16Cr ODS steel // Corros. Sci. 2021. V. 195, Is. 1 – 3. 110008.

Zhao R. et al. Effect of the addition of Y and Y2O3 on microstructure and mechanical properties of 15Cr – 15Ni ODS steel // Nucl. Mater. Energy. 2022. V. 31, Is. 1 – 2. 101196.

Xie Z. et al. Deterioration of irradiation resistance of ODS-F/M steel under high concentration of helium // J. Nucl. Mater. 2023. V. 577. 154293.

Unifantowicz P. et al. Microstructure and mechanical properties of an ODS RAF steel fabricated by hot extrusion or hot isostatic pressing // Fusion Eng. Des. 2011. V. 86, Is. 9 – 11. P. 2413 – 2416.

Odette G. R., Alinger M. J., Wirth B. D. Recent developments in irradiation-resistant steels // Annu. Rev. Mater. Res. 2008. V. 38, Is. 1. P. 471 – 503.

Couvrat M. et al. Microstructure evolution of mechanically alloyed ODS ferritic steels during hot extrusion // Solid State Phenom. 2011. V. 172 – 174. P. 721 – 726.

Singh R. et al. Nano oxide particles in 18Cr oxide dispersion strengthened (ODS) steels with high yttria contents // Mater. Charact. 2022. V. 189. 111936.

Staltsov M. S. et al. Optimization of mechanical alloying and spark-plasma sintering regimes to obtain ferrite-martensitic ODS steel // Nucl. Mater. Energy. 2016. V. 9. P. 360 – 366.

Chernov I. I. et al. Effect of the initial powder and treatment on the structure of oxide dispersion-strengthened steel // At. Energy. 2014. V. 116, Is. 1. P. 42 – 47.

Meza A. et al. The effect of composition and microstructure on the creep behaviour of 14Cr ODS steels consolidated by SPS // Mater. Sci. Eng. A. 2022. V. A 849. 143441.

Frelek-Kozak M. et al. Mechanical behavior of ion-irradiated ODS RAF steels strengthened with different types of refractory oxides // Appl. Surf. Sci. 2023. V. 610. 155 – 465.

Nikolaeva I. D. et al. Yttrium oxide concentration effect on helium porosity formation in oxide-dispersion-hardened ferrite-martensite steel // At. Energy. 2018. V. 124, Is. 3. P. 173 – 179.

Lucon E., Leenaers A., Vandermeulen W. Mechanical response of oxide dispersion strengthened (ODS) EUROFER97 after neutron irradiation at 300 °C // Fusion Eng. Des. 2007. V. 82, Is. 15 – 24. P. 2438 – 2443.

Shi Y. et al. Microstructure characterization and mechanical properties of laser additive manufactured oxide dispersion strengthened Fe – 9Cr alloy // J. Alloys Compd. 2019. V. 791. P. 121 – 133.

Horn T. et al. Laser powder bed fusion additive manufacturing of oxide dispersion strengthened steel using gas atomized reaction synthesis powder // Mater. Des. 2022. V. 216. 110574.

Koch C. C., Whittenberger J. D. Mechanical milling/alloying of intermetallics // Intermetallics. 1996. V. 4, Is. 5. P. 339 – 355.

Radev D. D. Mechanical synthesis of nanostructured titanium-nickel alloys // Adv. Powder Technol. The Society of Powder Technology Japan. 2010. V. 21, Is. 4. P. 477 – 482.

Amini R. et al. Formation of B19ў, B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics // Powder Technol. 2014. V. 253. P. 797 – 802.

Gligor I. et al. Elaboration of Titanium-Nickel alloy with special properties through mechanical milling // Mater. Sci. Forum. 2011. V. 672. P. 121 – 124.

Sridharan N., Gussev M. N., Field K. G. Performance of a ferritic/martensitic steel for nuclear reactor applications fabricated using additive manufacturing // J. Nucl. Mater. 2019. V. 521. P. 45 – 55.

Ordбs N. et al. Fabrication of TBMs cooling structures demonstrators using additive manufacturing (AM) technology and HIP // Fusion Eng. Des. 2015. V. 96 – 97. P. 142 – 148.

Shi Y. et al. Microstructure and tensile properties of laser engineered net shaped reduced activation ferritic/martensitic steel // Mater. Charact. 2018. V. 144. P. 554 – 562.

Hatakeyama T. et al. Microstructure development of modified 9Cr – 1Mo steel during laser powder bed fusion and heat treatment // Addit. Manuf. 2023. V. 61. 103350.

Самохин А. В., Фадеев А. А., Алексеев Н. В. и др. Сфероидизация порошков на основе железа в потоке плазмы электродугового плазмотрона и их применение в селективном лазерном плавлении // Физика и химия обработки материалов. 2019. № 4. С. 12 – 20

Golod V. M., Sufiiarov V. Sh. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization // IOP Conference Series: Materials Science and Engineering. 2017. V. 192, Is. 1. 012009.

Makhmutov T. et al. Synthesis of CoCrFeNiMnW0.25 high-entropy alloy powders by mechanical alloying and plasma spheroidization processes for additive manufacturing // Met. Mater. Int. The Korean Institute of Metals and Materials. 2020. No. 0123456789.

Kriewall C. S., Newkirk J. W. Plasma spheroidization of Vitreloy 106A bulk metallic glass powder // Metall. Mater. Trans. A. 2019. V. A50, No. 10. P. 4791 – 4797.

Sufiiarov V. et al. Synthesis of spherical powder of lead-free BCZT piezoceramics and binder jetting additive manufacturing of triply periodic minimum surface lattice structures // Materials. 2022. V. 15, Is. 18. 6289.

Mullis A., Adkins N. J. E., Aslam Z. High frame rate analysis of the spray cone geometry during close-coupled gas atomization // Int. J. Powder Metall. 2008. V. 44. P. 55 – 64.

Zhang D. et al. No ball milling needed: Alternative ODS steel manufacturing with gas atomization reaction synthesis (GARS) and friction-based processing // J. Nucl. Mater. 2022. V. 566, Is. 9. 153768.

Sehrt J. T., Kleszczynski S., Notthoff C. Nanoparticle improved metal materials for additive manufacturing // Prog. Addit. Manuf. 2017. V. 2, Is. 4. P. 179 – 191.

Barcikowski S., Schleifenbaum J. H., Gцkce B. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition // Jpn. J. Appl. Phys. 2018. V. 57, Is. 4. 040310.

Zhang D., Gцkce B., Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications // Chem. Rev. 2017. V. 117, Is. 5. P. 3990 – 4103.

Reichenberger S. et al. Perspective of surfactant-free colloidal nanoparticles in heterogeneous catalysis // ChemCatChem. 2019. V. 11, Is. 18. 00666.

Jasim A. M. et al. Nano-layer deposition of metal oxides via a condensed water film // Commun. Mater. 2020. V. 1. P. 9.

Hu Z. et al. Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor // J. Alloys Compd. 2022. V. 899. 163262.

Lee Y., Kwon N., Oh S. Fabrication of Fe-base superalloy powders with yttrium oxide dispersion by mechanical alloying and chemical route // Mater. Lett. 2017. V. 197. P. 135 – 138.

Попович А. А., Суфияров В. Ш., Разумов Н. Г. и др. Материалы и аддитивные технологии. Современные материалы для аддитивных технологий. Санкт-Петербург: СППУ, 2021. 204 с.

Popovich A. A. et al. Design and manufacturing of tailored microstructure with selective laser melting // Materials Physics and Mechanics. 2018. V. 38, Is. 1. P. 1 – 10.

Масайло Д. В. и др. Исследование структурных особенностей градиентного материала из жаропрочного никелевого сплава, изготовленного методом газопорошкового прямого лазерного выращивания // МиТОМ. 2018. № 11(761). С. 53 – 58.

Boegelein T. et al. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel // Mater. Charact. 2016. V. 112. P. 30 – 40.

Ilaham W. R. et al. Casting technology for ODS steels — dispersion of nanoparticles in liquid metals // IOP Conference Series Materials Science and Engineering. 2017. V. 228, Is. 1. 012020.

Hong Z. et al. Development of a novel melt spinning-based processing route for oxide dispersion-strengthened steels // Metall. Mater. Trans. A. 2017. V. A49, Is. 2. P. 604 – 612.

Shi Y., Lu Z., Xie R. Microstructure characterization and micro-hardness of Fe – 9Cr ODS alloy produced by laser powder bed fusion // IOP Conference Series Materials Science and Engineering. 2020. V. 772, Is. 1. 012110.

Haines M. P. et al. In-situ synthesis of oxides by reactive process atmospheres during L-PBF of stainless steel // Addit. Manuf. 2020. V. 33. 101178.

Riabov D. et al. Effect of the powder feedstock on the oxide dispersion strengthening of 316L stainless steel produced by laser powder bed fusion // Mater. Charact. 2020. V. 169. 110582.

Deng P. et al. The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion // Addit. Manuf. 2020. V. 35. 101334.

Park J. S. et al. Effect of energy input on the characteristic of AISI H13 and D2 tool steels deposited by a directed energy deposition process // Metall. Mater. Trans. A. 2016. V. A47, Is. 5. P. 2529 – 2535.

Farshidianfar M. H., Khajepour A., Gerlich A. P. Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing // J. Mater. Process. Technol. 2016. V. 231. P. 468 – 478.

Xu H. et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing // Fusion Eng. Des. 2017. V. 114. P. 33 – 39.

Vitek M., Mundra K., Debroy T. Development of macro- and microstructures carbon-manganese 10N alloy steelNelds: inclusion forlmation // Mater. Sci. Technol. 1995. V. 11, Is. 2. P. 186 – 199.

Jia H., Zhou Z., Li S. A new strategy for additive manufacturing ODS steel using Y-containing gas atomized powder // Mater. Charact. 2022. V. 187. 111876.

Gu D. et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing // Engineering. 2017. V. 3, Is. 5. P. 675 – 684.

Kenel C. et al. Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni – Cr – Al – Ti /ў superalloy // Addit. Manuf. 2021. V. 47. 102224.

De Luca A. et al. Microstructure and defects in a Ni – Cr – Al – Ti /ў model superalloy processed by laser powder bed fusion // Mater. Des. 2021. V. 201. 109531.

Yang Y. et al. Nanoparticle tracing during laser powder bed fusion of oxide dispersion strengthened steels // Materials. 2021. V. 14, Is. 13. 3463.

Meier C. et al. A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling // Comput. Methods Appl. Mech. Eng. 2021. V. 381, Is. 2. 113812.




DOI: https://doi.org/10.30906/mitom.2024.2.28-39


© Издательский дом «Фолиум», 1998–2024