Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние алюминия, меди и марганца на структуру и свойства чугунов

Н. В. Степанова, Р. И. Михалев, Т. Д. Тарасова, Д. С. Волков

Аннотация


Изучено влияние алюминия, меди, марганца на структуру, механические и триботехнические свойства чугуна. Методом литья в песчано-жидкостекольные формы получены чугуны трех типов (легированный алюминием; алюминием и медью; алюминием, медью и марганцем). Показано, что в структуре чугуна, содержащего алюминий и медь, образуются наноразмерные частицы фазы e-Cu, способствующие увеличению твердости и прочности материала. При легировании алюминием, медью и марганцем в структуре чугуна наряду с перлитом формируются микрообъемы мартенсита и остаточного аустенита. Частицы e-Cu зафиксированы как в пределах колоний пластинчатого перлита, так и внутри кристаллов мартенсита. Наличие аустенита в структуре чугуна сопровождается повышением его износостойкости.

Ключевые слова


чугун; e-Cu; прочностные свойства; антифрикционные свойства

Полный текст:

PDF

Литература


Osterle W., Prietzel C., Kloss, Dmitriev A. I. On the role of copper in brake friction materials // Tribol. Int. 2010. V. 43. P. 2317 – 2326.

Agunsoye J. O., Bello S. A., Hassan S. B. et al. The effect of copper addition on the mechanical and wear properties of grey cast iron // JMMC Engineering. 2014. V. 2. P. 470 – 483.

Zhang B., Xu B., Xu Yi. Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts // Tribol. Int. 2011. V. 44, Is. 7. P. 878 – 886.

Zhai W., Lu W., Liu X. Nanodiamond as an effective additive in oil to dramatically reduce friction and wear for fretting steel/copper interfaces // Tribol. Int. 2019. V. 129. P. 75 – 81.

Rodrigues A. C. P., Oesterle W., Gradt T. Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite // Tribol. Int. 2017. V. 110. P. 103 – 112.

Eroglu M. Boride coatings on steel using shielded metal arc welding electrode: microstructure and hardness // Surf. Coat. Technol. 2009. V. 203. P. 2229 – 2235.

Сильман Г. И., Камынин В. В., Гончаров В. В. О механизмах влияния меди на формирование структуры в чугуне // МиТОМ. 2007. № 9. С. 16 – 22.

Медь в черных металлах / Под ред. И. Ле Мэя, Л. М.-Д. Шётки: Пер. с англ. под ред. О. А. Банных. М.: Металлургия, 1988. 311 с. (May I. Le and Schetky L. McD 1982 Copper in Iron and Steel. New York: Wiley Interscience).

Bataev A. A., Stepanova N. V., Bataev I. A. et al. Special features of precipitation of -Cu phase in cast irons alloyed with copper and aluminum // Met. Sci. Heat Treat. 2018. V. 60, Is. 3 – 4. С. 150 – 157.

Stepanova N. V., Bataev I. A., Kang Y. et al. Composites of copper and cast iron fabricated via the liquid: In the vicinity of the limits of strength in a non-deformed condition // Mater. Charact. 2017. V. 130. P. 260 – 269.

Upadhyay S., Saxena K. K. Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: An overview // Materials Today: Proceedings. 2020. V. 26, Is. 2. P. 2462 – 2470.

Sazegaran H., Teimoori F., Rastegarian H., Naserian-Nik A. M. Effects of aluminum and copper on the graphite morphology, microstructure, and compressive properties of ductile iron // J. Min. Metall. B. 2021. V. 57, Is. 1. P. 145 – 154.

Garcia L. N., Tolley A. J., Carazo F. D., Boeri R. E. Identification of Cu-rich precipitates in pearlitic spheroidal graphite cast irons // Mater. Sci. Technol. 2019. V. 35, Is. 18. P. 2252 – 2258.

Sil’man G. I., Kamynin V. V., Tarasov A. A. Effect of copper on structure formation in cast iron // Met. Sci. Heat Treat. 2003. V. 45, Is. 7 – 8. P. 254 – 258.

Shubhank K., Kang Y. Critical evaluation and thermodynamic optimization of Fe – Cu, Cu – C, Fe – C binary systems and Fe – Cu – C ternary system // CALPHAD. 2014. V. 45. P. 127 – 137.

Sil’man G. I. About retrograde solidus and stratification of melt in the Fe – Cu and Fe – Cu – C systems // Met. Sci. Heat Treat. 2009. V. 51, Is. 1 – 2. P. 19 – 24.

Lazurenko D. V., Alferova G. I., Emurlaev K. I. et al. Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures // Surf. Coat. Technol. 2020. V. 395. Art. 125927.

Zhang G. W., Kang Y. Y., Wang M. J. et al. Atomic diffusion behavior and diffusion mechanism in Fe – Cu bimetal casting process studied by molecular dynamics simulation and experiment // Mater. Res. Express. 2020. V. 7. Art. 096519.

Chen K., Chen X., Wang Z., Sandstrom H. M. R. Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. Microstructure // J. Alloys Compd. 2018. V. 763. P. 592 – 605.

Buck D. M. Copper in steel — the influence on corrosion // J. Ind. Eng. Chem. 1913. V. 5, Is. 6. P. 447 – 452.

Li B., Qu H., Lang Y. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels // Corros. Sci. 2020. V. 173. Art. 108791.

X. Y., Zhang B., Wu B., Wei X. X. et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM // Corros. Sci. 2018. V. 130. P. 143 – 152.

Zhang Z. X., Lin G., Xu Z. Effects of light pre-deformation on pitting corrosion resistance of copper – bearing ferrite antibacterial stainless steel // J. Mater. Process. Technol. 2008. V. 205. P. 419 – 424.

Jeon S., Kim S., Lee I. et al. Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high Performance duplex stainless steels // Corros. Sci. 2011. V. 53. P. 1408 – 1416.

Zhang J., Young D. J. Effect of copper on metal dusting of austenitic stainless steels // Corros. Sci. 2007. V. 49. P. 1450 – 1467.

Hegde A., Sharma S. Machinability study of manganese alloyed austempered ductile iron // J. Braz. Soc. Mech. Sci. 2018. V. 40, Is. 7. Art. 338.

Dasgupta R. K., Mondal D. K., Chakrabarti A. K. Evolution of microstructures during austempering of ductile irons alloyed with manganese and copper // Metall. Mater. Trans. A. 2013. V. 44A. P. 1376 – 1387.

Susil K. Putatunda, Pavan K. Gadicherla. Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure // Mater. Sci. Eng. A. 1999. V. 268. P. 15 – 31.

Susil K. Putatunda, Pavan K. Gadicherla. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron // J. Mater. Eng. Perform. 2000. V. 9, Is. 2. P. 193 – 203.

Jian Yang, Yu-Nan Wang, Xiao-Ming Ruan et al. Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe – Mn – Al – C Steels // Metall. Mater. Trans. B. 2015. V. 46B. P. 1365 – 1375.

Печенкина Л. С. Влияние содержания структурообразующих компонентов на твердость малоуглеродистых белых чугунов // Вестник Воронежского государственного технического университета. 2017. Т. 13, № 3. С. 134 – 138.

Гималетдинов Р. Х., Гулаков А. А., Тухватулин И. Х. Влияние химического состава на свойства рабочего слоя центробежно-литых индефинитных прокатных валков // Вестник Магнитогорского государственного технического университета им. Г. И. Носова. 2016. Т. 14, № 3. С. 78 – 89.

Gimaletdinov R. Kh., Gulakov A. A., Tukhvatulin I. Kh. Effect of chemical composition on the performance of centrifugally cast indefinite chilled cast iron rolls // Vestnik of Nosov Magnitogorsk State Technical University. 2019. V. 17, Is. 1. P. 32 – 36.

Juneja R. H., Chakrabarti A. K., Basak A. K., Bhattacharya A. Austempering ductile iron alloyed copper and manganese // Foundry Manag. Tech. 1989. V. 117, Is. 2. P. 64 – 67.

Bayati H., Elliott R., Lorimer G. W. J. Stepped heat treatment for austempering of high manganese alloyed ductile iron // Mater. Sci. Tech. 1995. V. 11, Is. 10. P. 1007 – 1013.

Степанова Н. В., Тарасова Т. Д., Михалев Р. И. Peculiarities of copper precipitation in hypereutectoid steels // Metallurgist. 2023. V. 66, Is. 11 – 12. P. 1388 – 1400. DOI: 10.1007/s11015-023-01454-y

Степанова Н. В., Батаев А. А., Ситников А. А., Осколкова Т. Н. Износостойкость заэвтектоидной стали, легированной медью и алюминием // Обработка металлов: технология, оборудование, инструменты. 2015. № 4(69). С. 72 – 79. DOI: 10.17212/1994-6309-2015-4-72-79




DOI: https://doi.org/10.30906/mitom.2023.10.53-58


© Издательский дом «Фолиум», 1998–2024