Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Влияние добавки Ni на процесс формирования и механические свойства лазерной наплавки WC – 10Co – 4Cr на низкоуглеродистой стали

Сатиш Р. Море, Джиоти В. Менгани, Акаш Вьяс


Исследовано влияние технологических параметров процесса лазерной наплавки, а также добавки никеля (5 – 15 % масс.) в материал покрытия на структуру и механические свойства плакированных порошком WC – 10Co – 4Cr слоев на низкоуглеродистой стали. Установлены наиболее эффективные параметры наплавки при нанесении однопроходных дорожек и с перекрытием на 50%. Определены микроструктура и фазовый состав покрытий с помощью EDS и XRD. Исследованы микротвердость покрытий и эрозионный износ. Установлено, что максимальную микротвердость (в 3,6 раза выше, чем у материала подложки) имеет покрытие WC – 10Co – 4Cr (без Ni). Покрытие с 5 % Ni обладает более высокой стойкостью к эрозионному изнашиванию, чем покрытия с 10 и 15 % Ni.

Ключевые слова

лазерная наплавка; WC – 10Co – 4Cr — Ni покрытия; низкоуглеродистая сталь; микроструктура; микротвердость; эрозионная износостойкость

Полный текст:



Ludwig G. A., Malfatti C. F., Schroeder R. M. et al. WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion // Surf. Coat. Technol. 2019. V. 377, Is. 1. 124918.

Matikainen V., Peregrina R., Ojala N. et al. Erosion wear performance of WC – 10Co – 4Cr and Cr3C2 – 25NiCr coatings sprayed with high-velocity thermal spray processes // Surf. Coat. Technol. 2019. V. 370. P. 196 – 212.

Liu X., Kang J., Yue W. et al. Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion // Surf. Eng. 2019. V. 35, Is. 9. P. 816 – 825.

Singh G., Kumar S., Sehgal S. S. Erosion tribo performance of HVOF deposited WC – 10Co – 4Cr and WC – 10Co – 4Cr + 2 % Y2O3 micron layers on pump impeller steel // Part. Sci. Technol. 2020. V. 38, Is. 1. P. 34 – 44.

Liu Y., Liu W., Ma Y. et al. A comparative study on wear and corrosion behaviour of HVOF- and HVAF-sprayed WC – 10Co – 4Cr coatings // Surf. Eng. 2017. V. 33, Is. 1. P. 63 – 71.

Wang Q., Tang Z., Cha L. Cavitation and sand slurry erosion resistances of WC – 10Co – 4Cr coatings // J. Mater. Eng. Perform. 2015. V. 24. P. 2435 – 2443.

Thakur L., Arora N. Solid particle erosion behavior of WC – Co Cr nano structured coating // Tribol. Trans. 2013. V. 56, Is. 5. P. 781 – 788.

More S. R., Bhatt D. V., Menghani J. V. Resent research status on laser cladding as erosion resistance technique — An overview // Materials Today: Proceedings. 2017. V. 4. P. 9902 – 9908.

Paul C. P., Alemohammad H., Toyserkani E. et al. Cladding of WC – 12Co on low carbon steel using a pulsed Nd:YAG laser // Mater. Sci. Eng. A. 2007. V. 464. P. 170 – 176.

Angelastro A., Campanelli S. L., Casalino G., Ludovico A. D. Optimization of Ni-based WC/Co/Cr composite coatings produced by multilayer laser cladding // Adv. Mater. Sci Eng. 2013. ID 615464.

Desale G. R., Paul C. P., Gandhi B. K., Jain S. C. Erosion wear behavior of laser clad surfaces of low carbon austenitic steel // Wear. 2009. V. 266. P. 975 – 987.

More S., Desale G. R. Slurry erosion wear characteristics of laser clad surfaces // Kiran. 2013. V. 24, Is. 2. P. 43 – 48.

Zhong M., Yao K., Liu W., Qiang M. High power laser cladding stellite 6 + WC with various volume rate by duel powder feeding // Proceedings of the Laser Materials Processing Conference. 2005. P. 114 – 123.

Sun S., Durandet Y., Brandt M. Parametric investigation of pulsed Nd:YAG laser cladding of stellite 6 on stainless steel // Surf. Coat. Technol. 2005. V. 194. P. 225 – 231.

Fang L., Zhang Z., Ren L. et al. Effect of Ni addition on tensile properties of squeeze cast Al alloy A380 // Advances in Materials and Processing Technologies. 2018. V. 4, Is. 2. P. 200 – 209.

Sagarand K., Radhakrishna L. The influence of nickel addition on the mechanical properties of AA6061 fabricated by stir casting // Int. J. Mater. Sci. 2017. V. 12, Is. 4. P. 617 – 625.

Hernandez-Mendez F., Altamirano-Torres A., Miranda-Hernandez J. et al. Effect of nickel addition on microstructure and mechanical properties of aluminum-based alloys // Mater. Sci. Forum. 2011. V. 691. P. 10 – 14.

Tarrago J. M., Ferrari C., Reig B. et al. Mechanics and mechanisms of fatigue in a WC – Ni hardmetal and a comparative study with respect to WC – Co hardmetals // Int. J. Fatigue. 2015. V. 70. P. 252 – 257.

Zhang X., Zhou J., Liu C. et al. Effects of Ni addition on mechanical properties and corrosion behaviors of coarse-grained WC – 10(Co, Ni) cemented carbides // Int. J. Refract. Hard Met. 2019. V. 80. P. 123 – 129.

Cheng W. L., Zhou Z. F., Shum P. W., Li K. Y. Effect of Ni addition on the structure and properties of Cr – Ni – N coatings deposited by closed-field unbalanced magnetron sputtering ion plating // Surf. Coat. Technol. 2013. V. 229. P. 84 – 89.

Wen Ge Li, Qian Lin Wu. Effect of Ni addition on in-situ WC – Cr3C2 cermet coating by laser controlled reactive synthesisuse // Adv. Mat. Res. 2010. V. 123 – 125. P. 43 – 46.

Taylor S. R. Coatings for corrosion protection: metallic // Encyclopaedia of Materials: Science and Technology. 2001. P. 1269 – 1274.

Zhou J., Kong D. Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5 % NaCl solution // J. Alloys Compd. 2019. V. 795. P. 416 – 425.

More S. R., Bhatt D. V., Menghani J. V. et al. Laser cladding of PAC 718, Tribaloy T-700 and METCO 41 C hard facing powders on AISI SS 304L substrate // Int. J. Eng. Trans. B Applic. 2021. V. 34, Is. 2. P. 480 – 486.

Paul C. P., Bhargava P., Mishra S. K. et al. Development of a 2 kW fiber laser based Rapid Manufacturing System // Proc. DAE-BRNS National Laser Symposium (NLS-20), Anna University. Chennai, India. 2012. P. 129 – 132.

Qian M., Lim L. C., Chen Z. D., Chen W. L. Parametric studies of laser cladding processes // J. Mater. Process. Technol. 1997. V. 63. P. 590 – 593.

Pinkerton A. J., Li L. Multiple-layer cladding of stainless steel using high-powered diode laser: an experimental investigation of the process characteristics and material properties // Thin Solid Films. 2004. V. 453 – 454. P. 471 – 476.

Chong P. H., Man H. C., Yue T. M. Microstructure and wear properties of laser surface-cladded Mo WC MMC on AA6061 aluminum alloy // Surf. Coat. Technol. 2001. V. 145. P. 51 – 59.

Liu Z., Sun J. L., Steen W. M. et al. Laser cladding of Al – Sn alloy on a mild steel // J. Laser Appl. 1997. V. 9. P. 35 – 41.

Yadav A., Arora N., Gandhi B. K. et al. SS316L powder cladding on structural steel using continuous wave CO2 laser // 8th National Conference of Indian Society of Mechanical Engineers. IIT Roorkee, India, 2003. Paper No. PE-063.

Gupta D., Gandhi B. K., Gupta S. R. et al. Hard facing of AISI 304L stainless steel using high power CO2 laser // Proceedings of International Welding Conference, Mumbai, India, 2005. Paper No. IWA-105.

Lima M. M., Godoy C., Modenesi P. J. et al. Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC – Co thermally sprayed coatings // Surf. Coat. Technol. 2004. V. 177 – 178. P. 489 – 496.

Chiu K. Y., Cheng F. T., Man H. C. A preliminary study of cladding steel with NiTi by microwave-assisted brazing // Mater. Sci. Eng. A. 2005. V. 407. P. 273 – 281.

Zhong M., Yao K., Liu W. et al. High-power laser cladding Stellite 6 + WC with various volume rates // J. Laser Appl. 2001. V. 13, Is. 6. P. 247 – 251.

Zhong M., Yao K., Liu W. et al. High power laser cladding stellite 6 + WC with various volume rate by duel powder feeding // ICALEO 2000. D114. 2000.

Hong S., Wu Y., Zheng Y. et al. Microstructure and electrochemical properties of nanostructured WC – 10Co – 4Cr coating prepared by HVOF spraying // Surf. Coat. Technol. 2013. V. 235. P. 582 – 588.

Kanchan K., Anand K., Bellacci M., Giannozzi M. Effect ofmicrostructure on abrasive wear behavior of thermally sprayed WC – 10Co – 4Cr coatings // Wear. 2010. V. 268. P. 1309 – 1319.

Lee C. W., Han J. H., Yoon J. et al. A study on powder mixing for high fracture toughness and wear resistance of WC – Co – Cr coatings sprayed by HVOF // Surf. Coat. Technol. 2010. V. 204. P. 2223 – 2229.

Wang Q., Zhang S., Cheng Y. et al. Wear and corrosion performance of WC – 10Co4Cr coatings deposited by different HVOF and HVAF spraying processes // Surf. Coat. Technol. 2013. V. 218. P. 127 – 136.

Ozbek Y. Y., Canikogluand N., Ipek M. The surface properties of WC – Co – Cr based coatings deposited by high velocity oxygen fuel spraying // Acts Phys. Pol. 2017. V. 131. P. 186 – 189.

Souzaand V. A. D., Neville A. Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion — corrosion environments // Wear. 2007. V. 263. P. 339 – 346.

Wang Q., Li L., Yang G. et al. Influence of heat treatment on the microstructure and performance of high-velocity oxy-fuel sprayed WC – 12Co coatings // Surf. Coat. Technol. 2012. V. 206. P. 4000 – 4010.

Picas J. A., Punset M., Baile M. T. et al. Properties of WC – CoCr based coatings deposited by different HVOF thermal spray processes // Plasma Process. Polym. 2009. V. 6, Is. S1. P. 948 – 953.

Bolelli G., Berger L. M., Börner T., Koivuluoto H. Tribology of HVOF- and HVAF-sprayed WC – 10Co4Cr hardmetal coatings: A comparative assessment // Surf. Coat. Technol. 2015. V. 265. P. 125 – 144.

More S. R., Bhatt D. V., Menghani J. V. Failure analysis of coal bottom ash slurry pipeline in thermal power Plant // Eng. Fail. Anal. 2018. V. 90. P. 489 – 496.

DOI: https://doi.org/10.30906/mitom.2023.10.35-45

© Издательский дом «Фолиум», 1998–2024