Исследование газонасыщенного слоя после окисления сплава Ti6242S в интервале температур 500 – 800 °C
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Eylon D., Fujishiro S., Postans P. J., Froes F. H. High temperature titanium alloys — A review // Journal of Metals. 1984. V. 36. P. 55 – 62.
Bania P. J. Next generation titanium alloys for elevated temperature service // ISIJ International. 1991. V. 31, Is. 8. P. 840 – 847.
Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim, Wiley-VCH. 2003. 523 p.
Materials Properties Handbook: Titanium Alloys. / R. Boyer, J. Welsch, E. W. Collings (eds.). ASM International, Materials Parks, OH, 1994. 490 p.
Shenoy R. N., Unnam J., Clark R. K. Oxidation and embrittlement of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy // Oxidation of Metals. 1986. V. 26, Is. 1/2. P. 105 – 123.
Alcisto J. et al. The effect of thermal history on the color of oxide layers in titanium 6242 alloy // Engineering Failure Analysis. 2004. V. 11, No. 6. P. 811 – 816.
Mc Reynolds K. S., Tamirisakandala S. A study on alpha-case depth in Ti – 6Al – 2Sn – 4Zr – 2Mo // Metall. Mater. Trans. A. 2011. V. 42. P. 1732 – 1736.
Berthaud M. et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 °C: Effect of oxygen dissolution on lattice parameters // Corrosion Science. 2020. V. 164. 108049.
Vande Put A. et al. High-temperature oxidation behavior of Ti6242S Ti-based alloy // Oxidation of Metals. 2021. V. 96, Is. 3. P. 373 – 384.
Vaché N. et al. Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys // Corrosion Science. 2021. V. 178. 109041.
Gaddam R., Sefer B., Pederson R., Antti M. Oxidation and alpha-case formation in Ti – 6Al – 2Sn – 4Zr – 2Mo alloy // Materials Characterization. 2015. V. 99. P. 166 – 174.
Poquillon D., Armand C., Huez J. Oxidation and oxygen diffusion in Ti – 6Al – 4V alloy: improving measurements during sims analysis by rotating the sample // Oxidation of metals. 2013. V. 79, Is. 3. P. 249 – 259.
Dupressoire C. et al. The role of nitrogen in the oxidation behaviour of a Ti6242S alloy: a nanoscale investigation by atom probe tomography // Acta Materialia. 2021. V. 216. 117134.
Ogden H. R., Jaffee R. I. The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys // Technical Report TML-20. Battelle Memorial Inst. Titanium Metallurgical Lab. Columbus, Ohio. 1955. 99 p.
Conrad H. Effect of interstitial solutes on the strength and ductility of titanium // Prog. Mater. Sci. 1981. V. 26. P. 123 – 403.
Baillieux J., Poquillon D., Malard B. Relationship between the volume of the unit cell of hexagonal-close-packed Ti, hardness and oxygen content after -case formation in Ti – 6Al – 2Sn – 4Zr – 2Mo – 0.1Si alloy // J. Appl. Crystallogr. 2016. V. 49, Is. 1. P. 175 – 181.
Gurrappa I. An oxidation model for predicting the life of titanium alloy components in gas turbine engines // J. Alloys Compd. 2005. V. P. 190 – 197.
Topas V. General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual. Karlsruhe, Germany: Bruker AXS, 2005.
Pilchak A. L., Porter W. J., John R. Room temperature fracture processes of a near- titanium alloy following elevated temperature exposure // J. Mater. Sci. 2012. V. 47. P. 7235 – 7253.
Горелик С. С., Скаков Ю. А., Расторгуев Л. Н. Рентгенографический и электронно-оптический анализ. М.: МИСиС. 1994. 328 с.
Fargas G. et al. Influence of cyclic thermal treatments on the oxidation behavior of Ti – 6Al – 2Sn – 4Zr – 2Mo alloy // Materials Characterization. 2018. V. 145. P. 218 – 224.
Калиенко М. С., Волков А. В., Желнина А. В. и др. Влияние параметров кристаллической решетки поверхностного газонасыщенного слоя на пластичность титановых сплавов при испытании на растяжение // МиТОМ. 2019. № 8. С. 30 – 34.
DOI: https://doi.org/10.30906/mitom.2023.9.39-44
© Издательский дом «Фолиум», 1998–2024