Влияние термического старения на характер пластического течения при растяжении индийской стали RAFM (F82H)
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
The ITER project. EFDA – European Fusion Development Agreement (2006). INFCIRC/702, 2007. 33 p.
Meade D. M. Tokamak fusion test reactor D-T results // Fusion Eng. Des. 1995. V. 30. P. 13 – 23.
Rodriguez P., Krishnan R., Sundaram C. V. Radiation effects in nuclear reactor materials – correlation with structure // Bull. Mater. Sci. 1984. V. 6. P. 339 – 367.
Raj B., Jayakumar T. Development of reduced activation ferritic–martensitic steels and fabrication technologies for Indian test blanket module // J. Nucl. Mater. 2011. V. 417. P. 72 – 76.
Klueh R. L., Bloom E. E. The development of ferritic steels for fast induced-radioactivity decay for fusion reactor applications // Nucl. Eng. Des. 1985. V. 2. P. 383 – 389.
Lindau R., Schirran M. First results on the characterisation of the reduced-activation-ferritic-martensitic steel EUROFER // Fusion Eng. Des. 2001. V. 58 – 59. P. 781 – 785.
Alamo A., Brachet J. C., Castaing A. et al. Physical metallurgy and mechanical behaviour of FeCrWTaV low activation martensitic steels: Effects of chemical composition // J. Nucl. Mater. 1998. V. 258 – 263. P. 1228 – 1235.
Klueh R. L., Sokolov M. A. Mechanical properties of irradiated 9Cr–2WVTa steel with and without nickel // J. Nucl. Mater. 2007. V. 367. P. 102 – 106.
Wakai E., Sato M., Sawai T. et al. Mechanical properties and microstructure of F82H steel doped with boron or boron and nitrogen as a function of heat treatment // Mater. Trans. 2004. V. 45, Is. 2. P. 407 – 410.
Mergia K., Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel // J. Nucl. Mater. 2008. V. 373. P. 1 – 8.
Hollomon J. H. Tensile deformation // Trans. AIME. 1945. V. 162. P. 268 – 290.
Ludwigson D. C. Modified stress-strain relation for FCC metals and alloys // Metall. Trans. 1971. V. 2. P. 2825 – 2828.
Voce E. The relationship between stress and strain for homogeneous deformation // J. Inst. Met. 1948. V. 74. P. 537 – 562.
Voce E. A practical strain hardening function // Metallurgia. 1955. V. 51. P. 219 – 226.
Sahoo K. C., Vanaja J., Parameswaran P. et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel // Mater. Sci. Eng. A. 2017. V. 686. P. 54 – 64.
Moitra A., Sreenivasan P. R., Parameswaran P., Mannan S. L. Dynamic deformation and fracture properties of simulated weld heat affected zone of 9Cr – 1Mo steel from instrumented impact tests // Mater. Sci. Technol. 2002. V. 18, Is. 10. P. 1195 – 1200.
Ghosh A., Ray A., Chakrabarti D., Davis C. L. Cleavage initiation in steel: Competition between large grains and large particles // Mater. Sci. Eng. A. 2013. V. 561. P. 126 – 135.
Hayes R. W., Hayes W. C. A proposed model for the disappearance of serrated flow in two Fe alloys // Acta Metallurgica. 1984. V. 32. P. 259 – 267.
Mecking H., Kocks U. F. Kinetics of flow and strain-hardening // Acta Metallurgica. 1981. V. 29. P. 1865 – 1875.
Estrin Y., Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models // Acta Metallurgica. 1984. V. 32, Is. 1. P. 57 – 70.
Mishra N. S., Sanak Mishra, Ramaswamy V. Analysis of the temperature dependence of strain-hardening behavior in high-strength steel // Metall. Trans. A. 1989. V. 20. P. 2819 – 2829.
DOI: https://doi.org/10.30906/mitom.2023.9.22-33
© Издательский дом «Фолиум», 1998–2024