Соединение чугуна FE55006 и стали SAE 8620 с использованием технологии трения водяного столба (FHPP)
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Korkmaz S. A methodology to predict fatigue life of cast iron: uniform material law for cast iron // J. Iron Steel Res. Int. 2011. V. 18, Is. 8. P. 42 – 45.
Shirani M., Härkegård G. Fatigue life distribution and size effect in ductile cast iron for wind turbine components // Eng. Fail. Anal. 2011. V. 18, Is. 1. P. 12 – 24.
Winiczenko R., Kaczorowski M. Friction welding of ductile iron with stainless steel // J. Mater. Process. Technol. 2013. V. 213, Is. 3. P. 453 – 462.
Bushey R. A. Welding of cast irons / In: ASM Handbook. V. 6: Welding, Brazing, and Soldering. ASM International, 1993. P. 708 – 721.
Zeemann A. A soldagem por fusão para reconstruçãode de componentes de ferro fundido // Infosolda. 2003. P. 1 – 4.
Lovato R. A., Guesser W., De Paris A. F. Soldagem de ferro fundido vermicular com eletrodos revestidos (Welding Compacted Iron with SMAW) / In: Congresso Nacional de Soldagem, Caxias do Sul. Anais. Abs., 2007. V. 33. P. 1.
Pereira L. A. Estudo da soldabilidade do ferro fundido dúctil SiboDurв 700. 159 f.: Dissertação de Mestrado. Engenharia Mecânica, Instituto Superior de Engenharia do Porto. Porto, 2016. 127 p.
Kolukisa S. The effect of the welding temperature on the weldability in diffusion welding of martensitic (AISI 420) stainless steel with ductile (spheroidal graphite-nodular) cast iron // J. Mater. Process. Technol. 2007. V. 186, Is. 1 – 3. P. 33 – 36.
International organization for standardization. ISO 15620:2000 Welding – friction welding of metallic materials. Switzerland: ISO, 2000. 33 p.
Meyer A. Friction hydro pillar processing: bonding mechanism and properties / Master thesis. Gemeinsamen Fakultät für Maschinenbau und Elektrotechnik Der Technischen Universität Carolo. Braunschweig, 2004. 135 p.
Кондратьев С. Ю., Морозова Ю. Н., Голубев Ю. А. и др. Микроструктура и механические свойства швов после различных режимов импульсной сварки Al – Mg – Si-сплавов трением с перемешиванием // МиТОМ. 2017. № 11(749). С. 25 – 30. (Kondrat’ev S. Yu., Morozova Yu. N., Golubev Yu. A. et al. Microstructure and mechanical properties of welds of Al – Mg – Si alloys after different modes of impulse friction stir welding // Met. Sci. Heat Treat. 2018. V. 59, Is. 11 – 12. P. 697 – 702.
Ueji R. Microstructure evolution in dissimilar metal joint interface obtained by friction welding of cast iron and carbon steel // Joining and Welding Research Institute. Osaka, 2013. V. 42, Is. 1. P. 33 – 37.
Mironov S., Sato Y. S., Kokawa H. Microstructural evolution during friction stir-processing of pure iron // Acta Mater. 2008. V. 56, Is. 11. P. 2602 – 2614.
Song Yu-lai, Liu Yao-hui, Zhu Xian-yong et al. Strength distribution at interface of rotary-friction-welded aluminum to nodular cast iron // T. Nonferr. Metal. Soc. 2008. V. 18, Is. 1. P. 14 – 18.
Martinazzi D., Lemos G. V. B., Landell R. M. et al. Estudo preliminar sobre o efeito da geometria do pino no processo de soldagem FHPP entre o ferro fundido nodular FE55006 e o aço SAE 8620 // Periódico Tchê Química. 2019. V. 16, Is. 31. 642.
ASTM E-837. Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method: American Society for Testing and Materials ASTM Internacional // Annual book of ASTM standards. 2002. V 03.01. 16 p.
Schwarz T., Kockkelmann H. The hole-drilling method – the best technique for the experimental determination of residual stress in many fields of application / MTB. Stuttgart, 1993. P. 33 – 38.
Gencalp Irizalp S., Saklakoglu N., Baris F., Kayral S. Effect of shot peening on residual stress distribution and microstructure evolution of artificially defected 50CrV4 steel // J. Mater. Eng. Perform. 2020. V. 29, Is. 11. P. 7607 – 7616.
Singh S. K., Chattopadhyay K., Dutta P. Determination of optimum process parameters and residual stress in friction welding of thixocast A356 aluminum alloy // Metall. Mater. Trans. B. 2020. V. 51B, Is. 6. P. 3079 – 3088.
Bühr C., Ahmad B., Colegrove P. A. et al. Prediction of residual stress within linear friction welds using a computationally efficient modelling approach // Mater. Des. 2018. V. 139. P. 222 – 233.
DOI: https://doi.org/10.30906/mitom.2023.8.67-72
© Издательский дом «Фолиум», 1998–2024