Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Структура и фазовый состав термически обработанного биметалла Al – Zr

Ю. Ю. Эмурлаева, М. Н. Хомяков, Н. С. Александрова, К. И. Эмурлаев, И. А. Батаев

Аннотация


Проанализированы особенности структурно-фазовых превращений, происходящих в процессе отжига сваренного взрывом биметалла Al – Zr. Показано, что термическая обработка приводит к формированию и росту на межслойной границе интерметаллидной прослойки, твердость которой достигает 9 ГПа. Методами микрорентгеноспектрального и рентгенофазового анализов с применением дифракции синхротронного излучения установлено, что возникший интерметаллидный слой состоит из фазы ZrAl3 со структурой типа D023. Периоды решетки данной фазы постепенно изменяются в направлении от границ металл – интерметаллид к центру слоя. С использованием квантово-химического моделирования методом функционала плотности показано, что на некотором расстоянии от границы ZrAl3 – Zr триалюминид циркония находится в наиболее стабильном состоянии, что обусловлено процессом собирательной рекристаллизации и сопутствующей аннигиляцией дефектов кристаллического строения.

Ключевые слова


интерметаллиды; слоистые композиты; дифракция синхротронного рентгеновского излучения; диффузия

Полный текст:

PDF

Литература


Emurlaeva Yu. Yu., Ivanov I. V., Lazurenko D. V. et al. On the texture and superstructure formation in Ti – TiAl3 – Al MIL composites // Intermetallics. 2021. V. 135. P. 107231. DOI: 10.1016/j.intermet.2021.107231

Lazurenko D. V., Bataev I. A., Mali V. I. et al. Synthesis of me¬tal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron x-ray diffraction analysis of sintering process // Materials & Design. 2018. V. 151. P. 8 – 16. DOI: 10.1016/j.matdes.2018.04.038

Lazurenko D. V., Petrov I. Y., Mali V. I. et al. Ti – Al3Ti metal – intermetallic laminate (MIL) composite with a cubic titanium trialuminide stabilized with silver: Selection of fabrication regimes, structure, and properties // Journal of Alloys and Compounds. 2022. V. 916. P. 165480. DOI: 10.1016/j.jallcom. 2022.165480

Lazurenko D. V., Lozanov V. V., Stark A. et al. In situ syn¬chrotron x-ray diffraction study of reaction routes in Ti – Al3Ti-based composites: The effect of transition metals on L12 structure stabilization // Journal of Alloys and Compounds. 2021. V. 875. P. 160004. DOI: 10.1016/j.jallcom. 2021.160004

Shimozaki T., Okino T., Yamane M. et al. Effect of diffusion barrier and impurities in titanium on the growth rate of TiAl3 layer // Defect and Diffusion Forum. 1997. V. 143 – 147. P. 591 – 596. DOI: 10.4028/www.scientific.net/ddf.143-147.591

Foadian F., Soltanieh M., Adeli M., Etminanbakhsh M. The kinetics of TiAl3 formation in explosively welded Ti – Al multilayers during heat treatment // Metallurgical and Materials Transactions B. 2016. V. 47. P. 2931 – 2937. DOI: 10.1007/s11663-016-0710-1

Thiyaneshwaran N., Sivaprasad K., Ravisankar B. Nucleation and growth of TiAl3 intermetallic phase in diffusion bonded Ti/Al Metal Intermetallic Laminate // Scientific Reports. 2018. V. 8. P. 16797. DOI: 10.1038/s41598-018-35247-0

Zhao Y., Li J., Qiu R., Shi H. Growth characterization of inter¬metallic compound at the Ti/Al solid state interface // Mate¬rials. 2019. V. 12, Is. 3. P. 1 – 11. DOI: 10.3390/ma12030472

Harach D. J., Vecchio K. S. Microstructure evolution in me¬tal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air // Metallurgical and Materials Transactions A. 2001. V. 32. P. 1493 – 1505. DOI: 10.1007/s11661-001-0237-0

Ogneva T. S., Bataev I. A., Mali V. I. Effect of sintering pressure and temperature on structure and properties of Ni Al metal-intermetallic composites produced by SPS // Materials Characterization. 2021. V. 180. P. 111415. DOI: 10.1016/ j.matchar.2021.111415

Wang Y., Vecchio K. S. Microstructure evolution in Fe-ba¬sed-aluminide metallic–intermetallic laminate (MIL) compo¬sites // Materials Science and Engineering. A. 2016. V. 649. P. 325 – 337. DOI: 10.1016/j.msea.2015.10.019

Wang Y., Zhou S., Vecchio K. S. Annealing effects on the microstructure and properties of an Fe-based metallic-in¬ter¬metallic laminate (MIL) composite // Materials Science and Engi¬neering. A. 2016. V. 665. P. 47 – 58. DOI: 10.1016/j.msea.2016.04.03

Wang H., Kou R., Yi H. et al. Mesoscale hetero-deformation induced (HDI) stress in FeAl-based metallic-intermetallic la¬minate (MIL) composites // Acta Materialia. 2021. V. 213. P. 116949. DOI: 10.1016/j.actamat.2021.116949

Wang Y., Vecchio K. S. Microstructure evolution in a martensitic 430 stainless steel–Al metallic-intermetallic laminate (MIL) composite // Materials Science and Engineering A. 2015. V. 643. P. 72 – 85. DOI: 10.1016/j.msea.2015.07.014

Macwan A., Jiang X. Q., Li C., Chen D. L. Effect of annealing on interface microstructures and tensile properties of rolled Al/Mg/Al tri-layer clad sheets // Materials Science and Engineering. A. 2013. V. 587. P. 344 – 351. DOI: 10.1016/ j.msea.2013.09.002

Chen Z., Wang D., Cao X. et al. Wang Influence of multi-pass rolling and subsequent annealing on the interface micro¬structure and mechanical properties of the explosive welding Mg/Al composite plates // Materials Science and Engineering A. 2018. V. 723. P. 97 – 108. DOI: 10.1016/ j.msea.2018.03.042

Li Z. F., Dong J., Zeng X. Q. et al. Influence of strong static magnetic field on intermediate phase growth in Mg – Al diffusion couple // Journal of Alloys and Compounds. 2007. V. 440. P. 132 – 136. DOI: 10.1016/j.jallcom.2006.09.032

Глинка Н. Л. Общая химия / под ред. В. А. Рабинович. 21-е изд. Ленинград: Химия, 1980. 718 с.

Srivastava V. C., Singh T., Ghosh Chowdhury S., Jindal V. Microstructural characteristics of accumulative roll-bonded Ni – Al-based metal-intermetallic laminate composite // Journal of Materials Engineering and Performance. 2012. V. 21. P. 1912 – 1918. DOI: 10.1007/s11665-011-0114-y

Takeda F., Nakajima T. Preparation of Ti – Al gradient composite films by sputtering // Thin Solid Films. 1998. V. 316. P. 68 – 72. DOI: 10.1016/S0040-6090(98)00391-5

Bataev I. A., Bataev A. A., Mali V. I., Pavliukova D. V. Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing // Materials & Design. 2012. V. 35. P. 225 – 234. DOI: 10.1016/j.matdes.2011.09.030

Fronczek D. M., Wojewoda-Budka J., Chulist R. et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing // Materials & Design. 2016. V. 91. P. 80 – 89. DOI: 10.1016/j.matdes.2015.11.087

Ding H.-S., Lee J.-M., Lee B.-R. et al. Processing and micro¬structure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer // Materials Science and Engi¬neering. A. 2005. V. 408. P. 182 – 189. DOI: 10.1016/j.msea. 2005.07.055

Лысак В. И., Кузьмин С. В. Сварка взрывом. М.: Машиностроение, 2005. 543 с.

Konieczny M., Mola R., Thomas P., Kopciał M. Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils // Ar¬chi¬ves of Metallurgy and Materials. 2011. V. 56. P. 693 – 702. DOI: 10.2478/v10172-011-0076-y

Гуревич Л. М., Шморгун В. Г., Слаутин О. В., Богданов А. И. Слоистые интерметаллидные композиты и покрытия / Под ред. В. Н. Пустовойт М.: Металлургиздат. 2016. 346 с.

Дерибас А. А. Физика упрочнения и сварки взрывом. Новосибирск: Наука, 1980. 207 с.

Mehta A., Dickson J., Newell R. et al. Interdiffusion and Reac¬tion Between Al and Zr in the Temperature Range of 425 to 475 °C // Journal of Phase Equilibria and Diffusion. 2019. V. 40. P. 482 – 494. DOI: 10.1007/s11669-019-00729-9

Dickson J., Zhou L., Pazy Puente A. et al. Interdiffusion and reaction between Zr and Al alloys from 425 to 625 °C // Inter¬me¬tallics. 2014. V. 49. P. 154 – 162. DOI: 10.1016/j.intermet.2013.12.012

Kidson G. V., Miller G. D. A study of the interdiffusion of aluminum and zirconium // Journal of Nuclear Materials. 1964. V. 12. P. 61 – 69. DOI: 10.1016/0022-3115(64)90108-4

Laik A., Bhanumurthy K., Kale G. Intermetallics in the Zr – Al diffusion zone // Intermetallics. 2004. V. 12. P. 69 – 74. DOI: 10.1016/j.intermet.2003.09.002

Maas J., Bastin G., van Loo F., Metselaar R. The texture in diffusion-grown layers of trialuminides MeAl3 (Me = Ti, V, Ta, Nb, Zr, Hf) and VNi3 // International Journal of Materials Research. 1983. V. 74. P. 294 – 299. DOI: 10.1515/ ijmr-1983-740506

Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. 1996. V. 77. P. 3865 – 3868. DOI: 10.1103/PhysRevLett.77.3865

Blöchl P. E. Projector augmented-wave method // Physical Review B. 1994. V. 50. P. 17953 – 17979. DOI: 10.1103/ PhysRevB.50.17953

Enkovaara J., Rostgaard C., Mortensen J. J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method // Journal of Physics: Condensed Matter. 2010. V. 22. P. 253202. DOI: 10.1088/0953-8984/22/25/253202

Hjorth Larsen A., Jørgen Mortensen J., Blomqvist J. et al. The atomic simulation environment — a Python library for working with atoms // Journal of Physics: Condensed Matter. 2017. V. 29. P. 273002. DOI: 10.1088/1361-648X/aa680e

Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // Journal of Materials Research. 1992. V. 7. P. 1564 – 1583. DOI: 10.1557/JMR.1992.1564

Кузьмин С. В., Лысак В. И., Рыбин В. В., Пеев A. П. Особенности пластической деформации металла околошовной зоны при сварке взрывом разнородных металлов // Известия ВолгГТУ. 2010. Т. 5. С. 4 – 11.

Гринберг Б. А., Иванов М. А. Неоднородности поверхности раздела при сварке взрывом // Физика металлов и металловедение. 2012. Т. 113. С. 187 – 200.

Лысак В. И., Кузьмин С. В., Крохалев А. В., Гринберг Б. А. Строение границ в композиционных материалах, полученных с использованием взрывного нагружения // Физика металлов и металловедение. 2013. Т. 114. C. 1026 – 1031.

Гринберг Б. А., Иванов М. А., Кузьмин С. В., Лысак В. И. Сварка взрывом: процессы и структуры. М.: Инновационное машиностроение, 2017. С. 236.

Bataev I. A., Lazurenko D. V., Tanaka S. et al. High cooling rates and metastable phases at the interfaces of explosively welded materials // Acta Materialia. 2017. V. 135. P. 277 – 289. DOI: 10.1016/j.actamat.2017.06.038

Addaschain R., Abbaschian L., Reed-Hill R. E. Physical Me¬tallurgy Principles. Cengage Learning, 2009. P. 750.

Анурьев В. И. Справочник конструктора-машиностроителя: в 3-х т. М.: Машиностроение, 2001. Т. 1. С. 920.

Кикоин И. К. Таблицы физических величин. Справочник. М.: Атомиздат. 1976. С. 1008.

Priyadarshi A., Khavari M., Subroto T. et al. On the governing fragmentation mechanism of primary intermetallics by induced cavitation // Ultrasonics Sonochemistry. 2021. V. 70. P. 105260. DOI: 10.1016/j.ultsonch.2020.105260

Wang J., Shang S.-L., Wang Y. et al. First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties // Calphad. 2011. V. 35. P. 562 – 573. DOI: 10.1016/j.calphad.2011.09.009

Nakamura M., Kimura K. Elastic constants of TiAl3 and ZrAl3 single crystals // Journal of Materials Science. 1991. V. 26. P. 2208 – 2214. DOI: 10.1007/BF00549190




DOI: https://doi.org/10.30906/mitom.2023.7.49-58


© Издательский дом «Фолиум», 1998–2024