Изменение предела текучести и определяющее уравнение пластического течения низкоуглеродистой стали при повышенных температурах
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Jie R., Xu Y. X., Liu J. X. et al. Effect of strength and ductility on anti-penetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles // Mater. Sci. Eng. A. 2017. V. 682. P. 312 – 322.
Eric B., Régis B., Sophie R., Pierre F. Experimental investigation of the thixoforging of tubes of low-carbon steel // J. Mater. Process. Tech. 2018. V. 252. P. 485 – 497.
Li X., Jing T. F., Lu M. M., Zhang J. W. Microstructure and me¬cha¬nical properties of ultrafine lath-shaped low carbon steel // J. Mater. Eng. Perform. 2012. V. 21. P. 1496 – 1499.
Nipon T., Kan C. M., Chao S. Effects of carbon and nitrogen on the microstructure and mechanical properties of carbo¬ni¬trided low-carbon steel // J. Mater. Eng. Perform. 2015. V. 24. P. 4853 – 4862.
Vasanth S., Bilal M., Georges A., Ramsey H. Friction stir wel¬ding of low-carbon AISI 1006 steel: room and high-temperature mechanical properties // J. Mater. Eng. Perform. 2018. V. 27. P. 1673 – 1684.
Paul S., Ahmed U., Megahed G. Effect of hot rolling process on microstructure and properties of low-carbon al-killed steels produced through TSCR technology // J. Mater. Eng. Perform. 2011. V. 20. P. 1163 – 1170.
Deva A., Jha B. K., Mishra N. S. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel // Mater. Sci. Eng. A. 2011. V. 528. P. 7375 – 7380.
Kang M. J., Park J. Y., Sohn S. S. et al. Interpretation of qua¬si- static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets // Mater. Sci. Eng. A. 2017. V. 693. P. 170 – 177.
Hu J., Du L. X., Wang J. J. et al. Structure–mechanical pro¬perty relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling // Mater. Sci. Eng. A. 2013. V. 585. P. 197 – 204.
Li X., Jing T. F., Lu M. M. et al. Property of nano-grained delaminated low-carbon steel sheet // J. Mater. Process. Tech. 2011. V. 27. P. 364 – 368.
Yang X. W., Li W. Y. Flow behavior and processing maps of a low-carbon steel during hot deformation // Metall. Mater. Trans. A. 2015. V. 46, Is. 12. P. 6052 – 6064.
Kim J. H., Kim S. K., Lee C. S. et al. A constitutive equation for predicting the material nonlinear behavior of AISI 316L, 321, and 347 stainless steel under low-temperature conditions // Int. J. Mech. Sci. 2014. V. 87. P. 218 – 225.
Gao X. J., Jiang Z. Y., Wei D. B. et al. Constitutive analysis for hot deformation behavior of novel bimetal consisting of pear¬litic steel and low carbon steel // Mater. Sci. Eng. A. 2014. V. 595. P. 1 – 9.
Vadavadagi B., Shekhawat S., Samajdar I., Narasimhan K. Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution // Int. J. Adv. Manuf. Tech. 2016. V. 86. P. 1027 – 1036.
Siamak S. Modelling the warm rolling of a low carbon steel // Mater. Sci. Eng. A. 2004. V. 371. P. 318 – 323.
Sun Y., Maciejewski K., Ghonem H. Simulation of viscoplastic deformation of low carbon steel structures at elevated tempe¬ratures // J. Mater. Eng. Perform. 2012. V. 21. P. 1151 – 1159.
Горынин В. И., Кондратьев С. Ю., Оленин М. И. Повышение сопротивляемости хрупкому разрушению перлитных и мартенситных сталей при термическом воздействии на морфологию карбидной фазы // МиТОМ. 2013. № 10(700). С. 22 – 29. (Gorynin V. I., Kondrat’ev S. Yu., Ole¬nin M. I. Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morpho¬logy of the carbide phase // Met. Sci. Heat Treat. 2014. V. 55, Is. 9 – 10. P. 533 – 539.)
Wang J., Xiao H., Xie H. B. et al. Study on hot deformation behavior of carbon structural steel with flow stress // Mater. Sci. Eng. A. 2012. V. 539. P. 294 – 300.
Chung J. H., Park J. K., Kim T. H. et al. Study of deformation-induced phase transformation in plain low carbon steel at low strain rate // Mater. Sci. Eng. A. 2010. V. 527, Is. 20. P. 5072 – 5077.
Lin Y. C., Chen M. S., Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process // Comp. Mater. Sci. 2008. V. 43. P. 1117 – 1122.
Lin Y., Chen M. S. Study of microstructural evolution during static recrystallization in a low alloy steel // J. Mater. Sci. 2009. V. 44. P. 835 – 842.
Su R. M., Qu Y. D., You J. H., Li R. D. Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging // J. Mater. Eng. Perform. 2015. V. 24. P. 4328 – 4332.
Chen B., Zhou W. M., Li S. et al. Hot compression deformation behavior and processing maps of Mg – Gd – Y – Zr alloy // J. Mater. Eng. Perform. 2013. V. 22, Is. 9. P. 2458 – 2466.
Горынин В. И., Кондратьев С. Ю., Оленин М. И., Рогожкин В. В. Концепция карбидного конструирования сталей повышенной хладостойкости // МиТОМ. 2014. № 10(712). С. 32 – 38. (Gorynin V. I., Kondrat’ev S. Yu., Olenin M. I., Ro¬gozhkin V. V. A Concept of carbide design of steels with improved cold resistance // Met. Sci. Heat Treat. 2015. V. 56, Is. 9 – 10. P. 548 – 554.)
Hu H. E., Wang X. Y., Deng L. Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive equation // J. Mater. Process. Tech. 2014. V. 30, Is. 11. P. 1321 – 1327.
Wang S., Nagao A., Sofronis P., Robertson L. M. Hydrogen- modified dislocation structures in a cyclically deformed ferri¬tic-pearlitic low carbon steel // Acta Mater. 2018. V. 144. P. 164 – 176.
Li W. J., Cai M. Y., Wang D. et al. Studying on tempering transformation and internal friction for low carbon bainitic stee // Mater. Sci. Eng. A. 2017. V. 679. P. 410 – 416.
Feng R., Li S. L., Li Z. S., Tian L. Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering // Mater. Sci. Eng. A. 2012. V. 558. P. 205 – 210.
Sun S., Yang S. W., Liu G. L. Evolution of microstructures of a low carbon bainitic steel held at high service temperature // Acta Metall. Sin. (English Letters). 2014. V. 27. P. 436 – 443.
DOI: https://doi.org/10.30906/mitom.2023.6.42-48
© Издательский дом «Фолиум», 1998–2024