Математическое моделирование процесса аргонодуговой сварки. 2. Сварка трубопроводов из сплавов HP40NbTi
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Allahkaram S. R., Borjali S., Khosravi H. Investigation of weld¬ability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service // Mater. Des. 2012. V. 33. P. 476 – 484.
Guo J., Liu W., Li C., Zhang X. Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace // Metal. Res. Technol. 2020. V. 117, No. 6. P. 612.
Attarian M., Taheri A. K., Jalilvand S. et al. Microstructural and failure analysis of welded primary reformer furnace tube made of HP-Nb micro alloyed heat resistant steel // Eng. Fai¬lure Anal. 2016. V. 68. P. 32 – 51.
Reihani A., Razavi S. A., Abbasi E. et al. Failure analysis of welded radiant tubes made of cast heat-resisting steel // J. Fail. Anal. Prevent. 2013. V. 13, Is. 6. P. 658 – 665.
Hu B., Chen X., Liu C. et al. Study on microstructure and properties of centrifugal casting 35Cr45NiNb+MA furnace tubes during service // Mater. High Temp. 2019. V. 36, Is. 6. P. 489 – 498.
Ghatak A., Robi P. S. High-temperature tensile properties and creep life assessment of 25Cr35NiNb micro-alloyed steel // J. Mater. Eng. Perform. 2016. V. 25, Is. 5. P. 2000 – 2007.
Borjali S., Allahkaram S. R., Khosravi H. Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyro¬lysis furnaces during service condition // Mater. Des. 2012. V. 34. P. 65 – 73.
Guglielmino E., Pino R., Servetto C., Sili A. Damage investigation on welded tubes of a reforming furnace // La Me¬tal¬lurgia Italiana. 2015. V. 107, Is. 1. P. 53 – 58.
Singhatham C., Eidhed K. The study of welding repair parameters of tube 35Cr – 45Ni – Nb alloy of the ethylene heating furnace // Appl. Mech. Mater. 2016. V. 848. P. 35 – 38.
Рудской А. И., Орыщенко А. С., Кондратьев С. Ю. и др. Особенности структуры и длительная прочность литого жаропрочного сплава 45Х26Н33С2Б2 // МиТОМ. 2013. № 4(694). С. 42 – 47. (Rudskoy A. I., Oryshchenko A. S., Kon¬drat’ev S. Yu. et al. Special features of structure and long- term strength of cast refractory alloy 45Kh26N33S2B2 // Met. Sci. Heat Treat. 2013. V. 55, No. 3 – 4. P. 209 – 215.)
Kondrat’ev S. Yu., Anastasiadi G. P., Ptashnik A. V., Pe¬t¬rov S. N. Evolution of the microstructure and phase composition of a subsurface of cast HP-type alloy during a long-term high-temperature aging // Mater. Charact. 2019. V. 150. P. 166 – 173.
Guo J., Cao T., Cheng C. et al. Microstructure evolution and mechanical properties degradation of HPNb alloy after a five-year service // Mater. Res. Express. 2018. V. 5, Is. 4. P. 046509.
Kenik E. A., Maziasz P. J., Swindeman R. W. et al. Structure and phase stability in cast modified-HP austenite after long-term ageing // Scr. Mater. 2003. V. 49, Is. 2. P. 117 – 122.
Рудской А. И., Кондратьев С. Ю., Анастасиади Г. П. и др. Трансформация структуры жаропрочного сплава 0,45C – 26Cr – 33Ni – 2Si – 2Nb при длительной высокотемпературной выдержке // МиТОМ. 2013. № 10(700). С. 7 – 14. (Rudskoy A. I., Kondrat’ev S. Yu., Anastasiadi G. P. et al. Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during a long-term high-temperature hold // Met. Sci. Heat Treat. 2014. V. 55, No. 9 – 10. P. 517 – 525.)
Alvino A., Ramires D., Tonti A., Lega D. Influence of chemical composition on microstructure and phase evolution of two HP heat resistant stainless steels after long term plant-service aging // Mater. High Temp. 2014. V. 31, Is. 1. P. 2 – 11.
Guo J., Zhang X., Li C. et al. Effects of W and Ce micro addition in filler metal on microstructure and creep strength of Cr35Ni45NbM alloy weld joint // Mater. Today Commun. 2021. V. 28. P. 102600.
Кондратьев С. Ю., Фукс М. Д., Фролов М. А., Петров С. Н. Анализ структуры, фазового состава и механических свойств трубного сварного соединения из жаропрочного сплава HP40NbTi // МиТОМ. 2020. № 11(785). С. 21 – 31. (Kondrat’ev S. Yu., Fuks M. D., Frolov M. A., Pet¬rov S. N. Analysis of the structure, phase composition and mechanical properties of a tubular welded joint from re¬fractory alloy HP40NbTi // Met. Sci. Heat Treat. 2021. V. 62, Is. 11. P. 677 – 688.)
Кондратьев С. Ю., Беликова Ю. А., Фукс М. Д. и др. Влияние G-фазы на характер разрушения сварного соединения из жаропрочного сплава HP40NbTi // МиТОМ. 2022. № 1(799). С. 33 – 43. (Kondrat’ev S. Yu., Belikova Yu. A., Fuks M. D. et al. Effect of G-phase on the fracture behavior of a welded joint from refractory alloy HP40NbTi // Met. Sci. Heat Treat. 2022. V. 64, Is. 1 – 2. P. 34 – 44.)
Nunes F. C., de Almeida L. H., Dille J. et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels // Mater. Charact. 2007. V. 58, Is. 2. P. 132 – 142.
De Almeida L. H., Ribeiro A. F., Le May I. Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes // Mater. Charact. 2002. V. 49, Is. 3. P. 219 – 229.
De Almeida L. H., Emygdio P. R. O., Le May I., Ferraz F. C. Microstructural characterization and geometrical analysis of welded joints of high temperature stainless steel tubes / In: Burke M. G., Clark E. A., Palmiere E. J., editors. Micro¬struc¬tural science, V. 24. Understanding microstructure: key to advances in materials. Materials Park, USA: American Society for Metals, 1996. P. 193 – 198.
Ribeiro A. F., Borges R. M. T., de Almeida L. H. Phase transformation in heat resistant steels observed by STEM (NbTi)C – NiNbSi (G-Phase) // Acta Microsc. 2002. V. 11. P. 59 – 63.
Schill M., Odenberger E.-L. Simulation of residual deformation from a forming and welding process using LS-DYNA // Proc. of 13th International LS-DYNA conference, 2014. P. 47 – 54.
Schill M., Jernberg A., Klöppel T. Recent developments for welding simulations in LS-DYNA and LS-PrePost // Proc. of 14th International LS-DYNA Users Conference. 2016. Р. 1-1 – 1-12.
Goldak J., Chakravarti A., Bibby M. A new finite element model for welding heat source // Metall. Trans. B. 1984. V. 15B. P. 299 – 305.
Sudersanan P. D., Kempaiah U. N. The effect of heat input and travel speed on the welding residual stress by finite element method // International Journal of Mechanical and Production Engineering Research and Development. 2012. V. 2, Is. 4. P. 43 – 50.
Guo X., Jia X., Gong J. et al. Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32Ni1Nb steel // Mater. Sci. Eng. A. 2017. V. 690. P. 62 – 70.
Fuyang С.-m., Chen J.-y., Shao B. et al. Effect of micro¬struc¬tural evolution in thermal exposure on mechanical properties of HP40Nb alloy // Int. J. Press. Vessel. Pip. 2021. V. 192. 104391.
Рудской А. И., Орыщенко А. С., Кондратьев С. Ю. и др. Механизм и кинетика фазовых превращений в жаропрочном сплаве 45Х26Н33С2Б2 при длительных высокотемпературных выдержках. Часть 1 // МиТОМ. 2014. № 1(703). С. 3 – 8. (Rudskoy A. I., Oryshchenko A. S., Kondrat’ev S. Yu. et al. Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-tem¬pe¬rature holds. Part 1 // Met. Sci. Heat Treat. 2014. V. 56, Is. 1 – 2. P. 3 – 8.)
Рудской А. И., Кондратьев С. Ю., Анастасиади Г. П. и др. Механизм и кинетика фазовых превращений в жаропрочном сплаве 45Х26Н33С2Б2 при длительных высокотемпературных выдержках. Часть 2 // МиТОМ. 2014. № 3(705). С. 12 – 19. (Rudskoy A. I., Kondrat’ev S. Yu., Anastasia¬di G. P. et al. Mechanism and kinetics of phase transforma¬tions in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2 // Met. Sci. Heat Treat. 2014. V. 56, Is. 3 – 4. P. 124 – 130.)
Кондратьев С. Ю., Пташник А. В., Анастасиади Г. П., Петров С. Н. Анализ превращений карбидных фаз в сплаве 25Cr35Ni методом количественной электронной микроскопии // МиТОМ. 2015. № 7(721). С. 36 – 43. (Kon¬drat’ev S. Yu., Ptashnik A. V., Anastasiadi G. P., Petrov S. N. Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy // Met. Sci. Heat Treat. 2015. V. 57, Is. 7 – 8. P. 402 – 409.)
DOI: https://doi.org/10.30906/mitom.2023.6.23-34
© Издательский дом «Фолиум», 1998–2025