Влияние лазерной закалки и газового азотирования на износостойкость стали Р20: сравнительное исследование
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Lampman S. Introduction to surface hardening of steels / In: ASM Handbook. V. 4. Heat Treating: ASM International Park. OH, 1997. P. 259 – 267.
Liu B., Wang B., Yang X. et al. Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre-and post-shot peening // Appl. Surf. Sci. 2019. V. 483. P. 45 – 51.
Kondrat’ev S. Y., Gorynin V. I., Popov V. O. Optimization of the parameters of the surface-hardened layer in laser quenching of components // Weld. Int. 2012. V. 26, Is. 8. P. 629 – 632.
Rudskoi A. I., Kondrat’ev S. Yu., Sokolov Yu. A., Kopaev V. N. Simulation of the layer-by-layer synthesis of articles with an electron beam // Tech. Phys. 2015. V. 60, Is. 11. P. 1663 – 1669.
Sokolov Yu. A., Pavlushin N. V., Kondrat’ev S. Yu. New additive technologies based on ion beams // Russ. Eng. Res. 2016. V. 36, Is. 12. P. 1012 – 1016.
Ameri M. H., Ghaini F. M., Torkamany M. J. Investigation into the efficiency of a fiber laser in surface hardening of ICD-5 tool steel // Opt. Laser Technol. 2018. V. 107. P. 150 – 157.
Soriano C., Leunda J., Lambarri J. et al. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades // Appl. Surf. Sci. 2011. V. 257, Is. 16. P. 7101 – 7106.
Roy S., Zhao J., Shrotriya P. et al. Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel // Tribol. Int. 2017. V. 112. P. 94 – 102.
Yan G., Lu S., Zhang M. et al. Wear and corrosion behavior of P20 steel surface modified by gas nitriding with laser surface engineering // Appl. Surf. Sci. 2020. V. 530. 147306.
Giannuzzi L. A., Stevie F. A. A review of focused ion beam milling techniques for TEM specimen preparation // Micron. 1999. V. 30, Is. 3. P. 197 – 204.
Ochoa E. A., Figueroa C. A., Alvarez F. The influence of the ion current density on plasma nitriding process // Surf. Coat. Technol. 2005. V. 200, Is. 7. P. 2165 – 2169.
Dinesh Babu P., Balasubramanian K. R., Buvanashekaran G. Laser surface hardening: a review // Int. J. Surf. Sci. Eng. 2011. V. 5, Is. 2 – 3. P. 131 – 151.
Liu H., Liu J., Chen P. et al. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding // Opt. Laser Technol. 2019. V. 118. P. 140 – 150.
Liu X., Lei W., Ma L. et al. On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys // J. Alloys Compd. 2015. V. 630. P. 151 – 157.
Liu H., Sun S., Zhang T. et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding // Surf. Coat. Technol. 2021. V. 405. P. 126522.
Krauss G. Tempering of martensite in carbon steels / In: Phase Transformations in Steels: Woodhead Publishing, 2012. P. 126 – 150.
Shiue R. K., Chen C. Laser transformation hardening of tempered 4340 steel // Metall. Trans. A. 1992. V. 23, Is. 1. P. 163 – 170.
Yan M. F., Wu Y. Q., Liu R. L. Plasticity and ab initio characterizations on Fe4N produced on the surface of nanocrystallized 18Ni-maraging steel plasma nitrided at lower temperature // Appl. Surf. Sci. 2009. V. 255, Is. 21. P. 8902 – 8906.
ISO 14577-1:2015. Metallic materials-instrumented indentation test for hardness materials parameters — Part 1: Test method. Genève: ISO, 2015.
Gwidon W. S., Andrew W. B. Fatigue wear / In: W. S. Gwidon, W. B. Andrew (eds.), Engineering Tribology. Elsevier, Oxford, 2006. P. 595 – 619.
Rupert T. J., Schuh C. A. Sliding wear of nanocrystalline Ni – W: structural evolution and the apparent breakdown of Archard scaling // Acta Mater. 2010. V. 58, Is. 12. P. 4137 – 4148.
Williams J. A. Wear and wear particles-some fundamentals // Tribol. Int. 2005. V. 38, Is. 10. P. 863 – 870.
DOI: https://doi.org/10.30906/mitom.2023.4.59-66
© Издательский дом «Фолиум», 1998–2025