Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Композит на основе η-карбида ниобия: синтез, фазовый состав и свойства

М. А. Еремина, С. Ф. Ломаева, С. Л. Демаков, В. В. Тарасов

Аннотация


Исследованы композиты на основе η-карбида Nb3(Fe, Al)3C, полученные с использованием метода механического сплавления. Определен фазовый состав композитов. Проведены микроструктурный и количественный фазовый анализы. Определены плотность и твердость композитов. Проведены испытания на изнашивание. Показано, что механическим сплавлением элементарных компонентов в жидком углеводороде с последующим отжигом возможен синтез фазы η-карбида Nb3(Fe, Al)3C. Методом электроимпульсного плазменного спекания получен композит на основе h-карбида (60 масс. %), остальное — фазы Nb5Al3Cx, Nb3Al, Nb, Nb2C и ~ 5 % (масс.) нанопластинок графита. Композит имеет плотность 5,11 ± 0,05 г/см3 при пористости ~ 20 %, твердость 1,4 ± 0,6 ГПа и практически не изнашивается при испытаниях в условиях сухого трения с шариками из закаленной стали и сплава ВК6.

Ключевые слова


h-карбид Nb3(Fe, Al)3C; композиты; нанопластинки графита; жидкофазное механосплавление; электроимпульсное плазменное спекание; твердость; износостойкость.

Полный текст:

PDF

Литература


Chaus A. S., Braинk M., Sahul M., Tittel V. High-temperature transformation of carbides in skeleton eutectic and delta- eutectoid of cast high-speed steel // Metal Sci. Heat Treatment. 2020. V. 62(7 – 8). P. 489 – 497. https://doi.org/ 10.1007/s11041-020-00590-5.

Zhan J. M., Bi H. Y., Li M. C. Thermal fatigue behavior of 441 ferritic stainless steel in air and synthetic automotive exhaust gas // Sci. China Tech. Sci. 2022. V. 65. P. 169 – 178. https://doi.org/10.1007/s11431-021-1865-7.

Hamada J., Morihiro N., Kajimura H. Change of microstructure during thermal fatigue at maximum temperature 1073 K in Nb-added ferritic stainless steels // J. Japan Inst. Met. Mater. 2017. V. 81(12). P. 527 – 535. https://doi.org/10.2320/ jinstmet.JC201701.

Shengda G., Tao S., Rui B. et al. Synthesis and characterization of WC-6Co nanocrystalline composite powder // Rare Metal Mater. Eng. 2018. V. 47(7). P. 1986 – 1992. https://doi.org/10.1016/S1875-5372(18)30169-3.

Kwon Y. J., Yoo J. S., Park S. K. et al. Crystallization behavior of W35Fe43C22 amorphous alloy powders // J. Korean Soc. Heat Treat. 2018. V. 31(4). P. 165 – 170. https://doi.org/ 10.12656/jksht.2018.31.4.165.

Eryomina M. A., Lomayeva S. F., Kharanzhevsky E. V. et al. Phase composition and wear resistance of compacts and coatings based on carbides fabricated in W – Fe – C system by wet mechanical alloying // Proc. Struct. Integrity. 2021. V. 32. P. 284 – 290. https://doi.org/10.1016/j.prostr.2021.09.040.

Fujita N., Bhadeshia H. K. D. H., Kikuchi M. Precipitation sequence in niobium-alloyed ferritic stainless steel // Modelling Simul. Mater. Sci. Eng. 2004. V. 12. P. 273 – 284. https://doi.org/10.1088/0965-0393/12/2/008.

Sim G. M., Ahn J. C., Hong S. C. et al. Effect of Nb precipitate coarsening on the high temperature strength in Nb containing ferritic stainless steels // Mater. Sci. Eng. A. 2005. V. 396. P. 159 – 165. https://doi.org/10.1016/j.msea.2005.01.030.

Malfliet A., Mompiou F., Chassagne F. et al. Precipitation in Nb-stabilized ferritic stainless steel investigated with in-situ and ex-situ Transmission Electron Microscopy // Met. Mater. Trans. A. 2011. V. 42(3333). https://doi.org/10.1007/s11661-011-0745-5.

Reiffenstein E., Nowotny H., Benesovsky F. Einige neue h-carbide. Kurze Mitteilung // Mh. Chem. 1965. V. 96(5). P. 1543 – 1546. https://doi.org/10.1007/bf00902087.

Eryomina M. A., Lomayeva S. F. Mechanosynthesis of TiC(NbC)–Cu composites using liquid hydrocarbons // Mater. Tod.: Proc. 2019. V. 12. P. 151 – 154. https://doi.org/ 10.1016/j.matpr.2019.03.085.

Shelekhov E. V., Sviridova T. A. Programs for x-ray analysis of polycrystals // Met. Sci. Heat Treat. 2000. V. 42. P. 309 – 313. https://doi.org/10.1007/BF02471306.

Eryomina M. A., Lomayeva S. F., Tarasov V. V. et al. Microstructure characterization and properties of Ti carbohydride/Cu–Ti/GNP nanocomposites prepared by wet ball milling and subsequent magnetic pulsed compaction // Met. Mater. Int. 2021. V. 27. P. 1808 – 1818. https://doi.org/10.1007/ s12540-019-00531-9.

Timokhina I. B., Enomoto M., Miller M. K., Pereloma E. V. Microstructure-property relationship in the thermomechanically processed C – Mn – Si – Nb – Al – (Mo) transformation-induced plasticity steels before and after prestraining and bake hardening treatment // Met. Mater. Trans. A. 2012. V. 43. P. 2473 – 2483. https://doi.org/10.1007/s11661-012- 1106-8.

https://jmicrovision.github.io/v127/install127.htm.

Gong J., Wu J., Guan Z. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics // J. Europ. Ceram. Soc. 1999. V. 19. P. 2625 – 2631. https://doi.org/10.1016/S0955-2219(99)00043-6.




DOI: https://doi.org/10.30906/mitom.2023.1.48-54


© Издательский дом «Фолиум», 1998–2024