Микроструктурные и электрические характеристики пьезокерамики (Bi0,5Na0,5)TiO3 – ZnO
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
Shibata Kenji, Ruiping Wang, Tonshaku Tou, Jurij Koruza. Applications of lead-free piezoelectric materials // Mater. Res. Soc. 2018. V. 43. P. 612 – 616. https://doi.org/10.1557/ mrs.2018.180.
Hao Jigong, Wei Li, Jiwei Zhai, Haydn Chen. Progress in high-strain perovskite piezoelectric ceramics // Mater. Sci. Eng. R. 2019. V. 135. P. 1 – 57. https://doi.org/10.1016/ j.mser.2018.08.001.
Rybyanets A. N., Makarev D. I., Shvetsova N. A. Recent advances in porous piezoceramics applications // Ferroelectrics. 2019. V. 539. P. 106 – 116. https://doi.org/10.1080/ 00150193.2019.1570019.
Haertling G. H. Ferroelectric ceramics: History and technology // J. Am. Ceram. Soc. 1999. V. 82. P. 797 – 818. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x.
Bowen C. R., Kim H. A., Weaver P. M., Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications // Energy Environ. Sci. 2014. V. 7, Is. 1. P. 25 – 44. doi: 10.1039/C3EE42454E.
Rцedel J., Webber K. G., Dittmer R. et al. Transferring lead free-piezoelectric ceramics into applications // J. Eur. Ceram. Soc. 2015. V. 35, Is. 6. P. 1659 – 1681. https://doi.org/ 10.1016/j.jeurceramsoc.2014.12.013.
Priya S. Advances in energy harvesting using low profile piezoelectric transducers // J. Electroceramics. 2007. V. 19. P. 165 – 182. https://doi.org/10.1007/s10832-007-9043-4.
Liu Wenfeng, Lu Cheng, Shengtao Li. Prospective of (BaCa)(ZrTi)O3 lead-free piezoelectric ceramics // Crystals. 2019. V. 9, Is. 3. P. 179. https://doi.org/10.3390/cryst9030179.
Upadhyay Ashutosh, Hyun Ae Cha, Jae-Ho Jeon. Stabilities and piezoelectrics properties of amorphotropic phase boundary composition 0,2Pb(Mg1/3Nb2/3)O3 – 0,38PbZrO3 – 0,42PbTiO3 ternary piezoelectrics // J. Mater. Sci. 2019. V. 54, Is. 9. P. 6799 – 6806. https://doi.org/10.1007/ s10853-019-03365-3.
Bruno Binal P., Ahmed Raouf Fahmy, Moritz Stьrmer, et al. Properties of piezoceramic materials in high electric field actuator applications // Smart Mater. Struct. 2019. V. 28. P. 015029. https://doi.org/10.1088/1361-665X/aae8fb.
Scott J. F. Applications of modern ferroelectrics // Science. 2007. V. 315. P. 954 – 959. doi: 10.1126/science.1129564.
Jaffe B., Roth R. S., Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid solution ceramics // J. Appl. Phys. 1954. V. 25. P. 809 – 810. https://doi.org/10.1063/ 1.1721741.
Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS). Directive 2002/95/EC of the European Parliament and the Council, 2003.
Rцdel J., Jo W., Seifert K. T. P. et al. Perspective on the development of lead-free piezoceramics // J. Am. Ceram. Soc. 2009. V. 92, Is. 6. P. 1153 – 1157. https://doi.org/10.1111/ j.1551-2916.2009.03061.x.
Saito Y., Taiko H., Tani T. et al. Lead-free piezoceramics // Nature. 2004. V. 432. P. 84 – 87. https://doi.org/10.1038/ nature03028.
Walter J., Merz J. The electric and optical behavior of BaTiO3 single-domain crystals // Phys. Rev. 1949. V. 76, Is. 8. P. 1222 – 1225. https://doi.org/10.1103/PhysRev.76.1221.
Mason W. P. Electrostrictive effect in barium titanate ceramics // Phys. Rev. 1948. V. 74, Is. 9. P. 1134 – 1147. https://doi.org/10.1103/PhysRev.74.1134.
Akзa Erdem, Yэlmaz Hьseyin. Lead-free potassium sodium niobate piezoceramics for high-powerultrasonic cutting application: Modelling and prototyping // Process. Appl. Ceram. 2019. V. 13, Is. 1. P. 65 – 78. https://doi.org/10.2298/ PAC1901065A.
Jaeger R. E., Egerton L. Hot pressing of potassium-sodium niobates // J. Am. Ceram. Soc. 1962. V. 45, Is. 5. P. 209 – 213. https://doi.org/10.1111/j.1151-2916.1962.tb11127.x.
Egerton L., Dillon D. M. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate // J. Am. Ceram. Soc. 1959. V. 42, Is. 9. P. 438 – 442. https://doi.org/10.1111/j.1151-2916.1959.tb12971.x.
Li Chenwan, Ling Yang, Jiwen Xu et al. The effect of artificial stress on structure, electrical and mechanical properties of Sr2+ doped BNT – BT lead-free piezoceramics // J. Mater. Sci. Mater. Electron. 2019. V. 30, Is. 24. P. 21398 – 21405. https://doi.org/10.1007/s10854-019-02518-z.
Song Guanhua, Zhibin Liu, Faqiang Zhang et al. High-throughput synthesis and electrical properties of BNT-BTKNN lead-free piezoelectric ceramics // J. Mater. Chem. C. 2020. V. 8, Is. 11. P. 3655 – 3662. doi: 10.1039/c9tc06745k.
Zhao Zhi-Hao, Rui-Fang Gey, Yejing Dai. Large electro-strain signal of the BNT – BT – KNN lead-free piezoelectric ceramics with CuO doping // J. Adv. Dielectr. 2019. V. 9, Is. 3. P. 1950022. https://doi.org/10.1142/S2010135X1950022X.
Buhrer Carl F. Some properties of bismuth perovskites // J. Chem. Phys. 1962. V. 36, Is. 3. P. 798 – 803. https://doi.org/ 10.1063/1.1732613.
Benavides Fernandez D. A., Gutierrez-Perez A. I., Benitez-Castro A. M. et al. Comparative study of ferroelectric and piezoelectric properties of BNT – BKT – BT ceramics near the phase transition zone // Materials. 2018. V. 11, Is. 3. P. 361. https://doi.org/10.3390/ma11030361.
Geng Xiao-Yu, Zhang Ji, Wang Rui-Xue et al. ZnO-enhanced electrical properties of Bi0.5Na0.5TiO3-based incipient ferroelectrics // J. Am. Ceram. Soc. 2017. V. 100, Is. 12. P. 5659 – 5667. DOI: 10.1111/jace.15090.
Chiang Hsin-Ying, Lee Ying-Chieh, Gaik Teoh Lay. Effect of microwave sintering on the microstructure and piezoelectric properties of ZnO-doped Bi0.5Na0.5TiO3 ceramics // J. Ceram. Society Japan. 2013. V. 121, Is. 5. P. 430 – 436. https://doi.org/10.2109/jcersj2.121.430.
Li Zhi-Tao, Hui Liu, Hao-Cheng Thong et al. Enhanced temperature stability and defect mechanism of BNT-based lead-free piezoceramics investigated by a quenching process // Adv. Electron. Mater. 2018. No. 1800756. https://doi.org/10.1002/aelm.201800756.
Supalak M., Tawee T., Pharatree J. et al. Electrical properties of modified BNT based lead-free ceramics // Materials Science Forum. 2016. V. 872. P. 87 – 91. https://doi.org/ 10.4028/www.scientific.net/MSF.872.87.
Wang Yongli, Li Longtu, Qi Jianquan, Gui Zhilun. Frequency response of ZnO-doped BaZrxTi1–xO3 ceramics // Mater. Chem. Phys. 2002. V. 76, Is. 3. P. 250 – 254. https://doi.org/ 10.1016/S0254-0584(01)00534-X.
Chou Chuen-Shi, Wu Chun-Yu, Yang Ru-Yuan and Ho Cheng-Yang. Preparation and characterization of the bismuth sodium titanate (Na0.5Bi0.5TiO3) ceramic doped with ZnO // Adv. Powder Technol. 2012. V. 23. P. 358 – 365. https:// doi.org/10.1016/j.apt.2011.04.015.
Look D. C. Recent advances in ZnO materials and devices // Mater. Sci. Eng. B. 2001. V. 80, Is. 1 – 3. P. 383 – 387. https://doi.org/10.1016/S0921-5107(00)00604-8.
Wang Z. L. Nanostructures of ZnO for nanoscale photonics, optoelectronic, piezoelectricity, and sensing // Appl. Phys. A. 2007. V. 88, Is. 1. P. 7 – 15. https://doi.org/10.1007/ s00339-007-3942-8.
Bovhyra R., Popovych D., Bovgyra O., Serednytski A. Ab initio study of structural and electronic properties of (ZnO)n “magical” nanoclusters n = (34, 60) // Nanoscale Res. Lett. 2017. V. 12, Is. 1. P. 76. https://doi.org/10.1186/ s11671-017-1848-8.
Han X., Harris J., Siller L. Synthesis of porous zinc-based/zinc oxide composites via sol-gel and ambient pressure drying routes // J. Mater. Sci. 2018. V. 53, Is. 11. P. 8170 – 8179. https://doi.org/10.1007/s10853-018-2138-2.
Etcheverry L. P., Flores V. H., Silva D. L., Moreira E. C. Annealing effects on the structural and optical properties of ZnO nanostructures // Mater. Res. 2018. V. 21, Is. 2. P. 1 – 7. https://doi.org/10.1590/1980-5373-mr-2017-0936.
Lutteroti L. MAUD, 2000. Version 2.50. http://maud.radiographema.
Mebrek Alima, Sihem Benayache, Afef Azzi et al. Structural properties of sintered zinc titanate ceramics // AIP Conf. Proc. 2019. V. 2123, Is. 1. P. 030013. https://doi.org/10.1063/ 1.5117044.
Mebrek Alima, Alleg Safia, Benayache Sihem, Benabdeslem Mohamed. Preparation and characterization of spinel-type Zn2TiO4 nanocomposite // Ceram. Int. 2018. V. 44, Is. 9. P. 10921 – 10928. https://doi.org/10.1016/j.ceramint. 2018.03.153.
Newnham R. E., Skinner D. P., Cross L. E. Connectivity and piezoelectric-pyroelectric composites // Mater. Res. Bull. 1978. V. 13, Is. 5. P. 525 – 536. https://doi.org/10.1016/ 0025-5408(78)90161-7.
Zhang Ji, Zhao Pan, Fei-Fei Guo et al. Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics // Nat. Commun. 2015. V. 6, Is. 1. P. 1 – 10. 10.1038/ncomms7615.
Lee Ying-Chieh, Lee Tai-Kuang, Jan Jhen-Hau. Piezoelectric and microstructures of ZnO-doped (Bi0.5Na0.5TiO3) ceramics // J. Eur. Ceram. Soc. 2011. V. 31. P. 3145 – 3152. https://doi.org/10.1016/j.jeurceramsoc.2011.05.010.
Riemer Lukas M., Lalitha K. V., Jiang Xijie et al. Stress-induced phase transition in lead-free relaxor ferroelectric composites // Acta Mater. 2017. V. 136. P. 271 – 280. doi: 10.1016/j.actamat.2017.07.008.
Liu Gang, Jiang Wentao, Jiao Jingyong et al. The investigation of electrical properties and microstructure of ZnO-doped Ba0.9Sr0.1TiO3 ceramics // J. Adv. Dielectr. 2017. V. 7, Is. 01. P. 1750007. https://doi.org/10.1142/S2010135X17500072.
Watcharapasorn A., Jiansirisomboon S., Tunkasiri T. Sintering of Fe-doped Bi0.5Na0.5TiO3 at < 1000 °C // Mater. Lett. 2007. V. 61, Is. 14 – 15. P. 2986 – 2989. https://doi.org/ 10.1016/j.matlet.2006.10.059.
Lin Dunmin, Kwok K. W., Chan H. L. W. Structure and electrical properties of Bi0.5Na0.5TiO3 – BaTiO3 – Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics // Solid State Ion. 2008. V. 178, Is. 37 – 38. P. 1930 – 1937. https://doi.org/10.1016/ j.ssi.2007.12.096.
Hajra Sugato, Sahoo Sushrisangita, Das Rutuparna, Choudhary R. N. P. Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3–BaTiO3 electronic system // J. Alloys Compd. 2018. V. 750. P. 507 – 514. https://doi.org/ 10.1016/j.jallcom.2018.04.010.
Rawat Meera, Yadav K. L., Kumar Amit et al. Structural, dielectric and conductivity properties of Ba2+ doped (Bi0.5Na0.5)TiO3 ceramic // Adv. Mater. Lett. 2012. V. 3, Is. 4. P. 286 – 292. doi: 10.5185/amlett.2012.2322.
DOI: https://doi.org/10.30906/mitom.2023.2.56-62
© Издательский дом «Фолиум», 1998–2024