Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Исследование микроструктуры и механических свойств гибридных композитов A713 – TiB2 – графен, полученных методом литья с перемешиванием

Шьям Рангрей, Шайлешкумар Пандиа, Джоти Менгани

Аннотация


Исследованы микроструктура и механические свойства алюминиевых композитов на основе матричного сплава A713, армированного частицами TiB2 и графена. Композиты изготовлены с использованием технологии литья с перемешиванием. Содержание армирующих частиц графена в композитах сохранялось постоянным — 0,5 % (масс.), количество частиц TiB2 варьировалось — 2, 4 и 6 % (масс.). Проведен микроструктурный анализ композитов методами световой и электронной микроскопии, а также рентгеновской дифракции. Определены механические свойства методами испытаний на растяжение и измерения твердости. Для оценки характера разрушения образцов при растяжении выполнен анализ поверхности излома с использованием СЭМ.


Ключевые слова


гибридный композит A713 – TiB2 – графен; литье с перемешиванием; микроструктура; фрактография; микротвердость; механические свойства

Полный текст:

PDF

Литература


Umasankar V., Xavior M. A., Karthikeyan S. Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing // J. Alloy. Compd. 2014. V. 582. P. 380 – 386.

Bastwros M., Kim G. Y., Zhu C. et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering // Compos. B. Eng. 2014. V. 60. P. 111 – 118.

Rangrej S., Pandya S., Menghani J. Effects of reinforcement additions on properties of aluminium matrix composites — A review // Materials Today: Proceedings. 2021. V. 44. P. 637 – 641.

Gopal Krishna U. B., Sreenivas Rao K. V., Vasudeva B. Effect of boron carbide reinforcement on aluminium matrix composites // Int. J. Metall. Mater. Sci. Eng. 2013. V. 3, Is. 1. P. 41 – 48.

Bagheri B., Abdollahzadeh A., Sharifi F., Abbasi M. The role of vibration and pass number on microstructure and mechanical properties of AZ91/SiC composite layer during friction stir processing // Proc. Inst. Mech. Eng. C.-J. Mech. Eng. Sci. 2022. V. 236, Is. 5. P. 2312 – 2326.

Roy U. K., Mondal S. Microstructure, and properties of powder composites with aluminum matrix reinforced with carbon nanomaterials // Met. Sci. Heat Treat. 2022. V. 64, Is. 3 – 4. P. 156 – 162.

Соколов Ю. А., Павлушин Н. В., Кондратьев С. Ю. Новые аддитивные технологии с использованием пучка ионов // Вестник машиностроения. 2016. № 9. С. 72 – 76. (Sokolov Yu. A., Pavlushin N. V., Kondrat’ev S. Yu. New additive technologies based on ion beams // Russ. Eng. Res. 2016. V. 36, Is. 12. P. 1012 – 1016.)

Рудской А. И., Кондратьев С. Ю., Соколов Ю. А., Копаев В. Н. Особенности моделирования процесса послойного синтеза изделий электронным лучом // ЖТФ. 2015. Т. 85, Вып. 11. С. 91 – 96. (Rudskoi A. I., Kondrat’ev S. Yu., Sokolov Yu. A., Kopaev V. N. Simulation of the layer-by-layer synthesis of articles with an electron beam // Tech. Phys. 2015. V. 60, Is. 11. P. 1663 – 1669.)

Рудской А. И., Кондратьев С. Ю., Соколов Ю. А. Новый подход к синтезу порошковых и композиционных материалов электронным лучом. Часть 1. Технологические особенности процесса // МиТОМ. 2016. № 1(727). С. 30 – 35. (Rudskoy A. I., Kondrat’ev S. Yu., Sokolov Yu. A. New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process // Met. Sci. Heat Treat. 2016. V. 58, Is. 1 – 2. P. 27 – 32.)

Кондратьев С. Ю., Соколов Ю. А. Новый подход к синтезу порошковых и композиционных материалов электронным лучом. Часть 2. Практические результаты на примере сплава ВТ6 // МиТОМ. 2016. № 3(729). С. 40 – 44. (Kondrat’ev S. Yu., Sokolov Yu. A. New approach to electron beam synthesis of powder and composite materials. Part 2. Practical results for alloy VT6 // Met. Sci. Heat Treat. 2016. V. 58. Iss. 3 – 4. P. 165 – 169.)

Rangrej S., Pandya S., Menghani J. Effects of TiB2 reinforcement proportion on structure and properties of stir cast A713 composites // Can. Metall. Q. 2022. P. 1 – 12. DOI: 10.1080/ 00084433.2022.2149202

Khalikova G., Basyrova R., Trifonov V. Structure and microhardness of aluminum matrix composite produced by severe plastic deformation // AIP Conference Proceedings. 2022. V. 2533, Is. 1. 020044.

Sankhla A., Patel K. M. Metal matrix composites fabricated by stir casting process — A review // Advances in Materials and Processing Technologies. 2022. V. 8, Is. 2. P. 1270 – 1291.

Moghaddas M. A., Kashani-Bozorg S. F. Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing // Mater. Sci. Eng. A. 2013. V. 559. P. 187 – 193.

Gautam R., Bharti A., Kumar N., Tripathi H. Mechanical properties of low-cost aluminum-matrix hybrid composites reinforced with industrial waste quarry dust // Met. Sci. Heat Treat. 2023. V. 64, Is. 10. P. 603 – 607.

Du R., Gao Q., Wu S. et al. Influence of TiB2 particles on aging behavior of in-situ TiB2 /Al – 4.5Cu composites // Mater. Sci. Eng. A. 2018. V. A721. P. 244 – 250.

Dinaharan I., Murugan N. Dry sliding wear behavior of AA6061/ZrB2 in-situ composite // T. Nonferr. Metal. Soc. 2012. V. 22, Is. 4. P. 810 – 818.

Rangrej S., Mehta V., Ayar V., Sutaria M. Effects of stir casting process parameters on dispersion of reinforcement particles during preparation of metal composites // Materials Today: Proceedings. 2021. V. 43. P. 471 – 475.

Moses J. J., Dinaharan I., Joseph S. S. Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting // T. Nonferr. Metal. Soc. 2016. V. 26, Is. 6. P. 1498 – 1511.

Liu Z. Y., Kent D., Schaffer G. B. Powder injection moulding of an Al – AlN metal matrix composite // Mater. Sci. Eng. A. 2009. V. A513. P. 352 – 356.

Abdoos H., Memar S., Riahi M. R. An examination of microstructure, mechanical and dry wear properties of stir cast brass/Al2O3 composites // Can. Metall. Q. 2021. V. 60, Is. 2. P. 97 – 110.

Ayar V. S., Sutaria M. P. Development and characterization of in situ AlSi5Cu3 /TiB2 composites // Int. J. Met. 2020. V. 14. P. 59 – 68.

Li F., Long L., Weng Y. A review on the contemporary development of composite materials comprising graphene/graphene derivatives // Adv. Mater. Sci. Eng. 2020, Is. 2. P. 1 – 16.

Venkatesan S., Xavior M. A. Characterization on aluminum alloy 7050 metal matrix composite reinforced with graphene nanoparticles // Procedia Manuf. 2019. V. 30. P. 120 – 127.

Єenel M. C., Gьrbьz M., Koз E. Fabrication and characterization of aluminum hybrid composites reinforced with silicon nitride/graphene nanoplatelet binary particles // J. Compos. Mater. 2019. V. 53, Is. 28 – 30. P. 4043 – 4054.

Boppana S. B., Dayanand S., Kumar M. A. et al. Synthesis and characterization of nano graphene and ZrO2 reinforced Al6061 metal matrix composites // J. Mater. Res. Technol. 2020. V. 9, Is. 4. P. 7354 – 7362.

Prasad Reddy A., Vamsi Krishna P., Rao R. N. Tribological behaviour of Al6061 – 2SiC – xGr hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique // Silicon. 2019. V. 11. P. 2853 – 2871.

Du X. M., Zheng K. F., Zhao T., Liu F. G. Fabrication and characterization of Al 7075 hybrid composite reinforced with graphene and SiC nanoparticles by powder metallurgy // Dig. J. Nanomater. Biostructures. 2018. V. 13, Is. 4. P. 1133 – 1140.

Patoliya D. M., Sharma S. Preparation and characterization of zirconium dioxide reinforced aluminium metal matrix composites // Eng. Technol. 2015. V. 4, Is. 5. P. 3315 – 3321.

Rino J. J., Sivalingappa D., Koti H., Jebin V. D. Properties of Al6063 MMC reinforced with zircon sand and alumina // IJRDO – Journal of Mechanical and Civil Engineering. 2013. V. 5, Is. 5. P. 72 – 77.

Aruna K., Diwakar K., Bhargav Kumar K. Development and characterization of Al6061 – ZrO2 reinforced metal matrix composites // Int. J. Adv. Res. Comput. Sci. Software Eng. 2018. V. 8. P. 270 – 275.

Malhotra S., Narayan R., Gupta R. D. Synthesis and characterization of aluminium 6061 alloy-fly ash & zirconia metal matrix composite // Int. J. Eng. Technol. 2013. V. 3, Is. 5. P. 1716 – 1719.

Pйrez-Bustamante R., Bolaсos-Morales D., Bonilla-Martнnez J. et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying // J. Alloy. Compd. 2014. V. 615. P. S578 – S582.

Ravesh S. K., Garg T. K. Preparation & analysis for some mechanical property of aluminium based metal matrix composite reinforced with SiC & fly ash // International Journal of Engineering Research and Applications. 2012. V. 2, Is. 6. P. 727 – 731.

Bуdis E., Cora I., Balбzsi C. et al. Spark plasma sintering of graphene reinforced silicon carbide ceramics // Ceram. Int. 2017. V. 43, Is. 12. P. 9005 – 9011.

Murty B. S., Kori S. A., Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying // Int. Mater. Rev. 2002. V. 47, Is. 1. P. 3 – 29.

Pazhouhanfar Y., Eghbali B. Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process // Mater. Sci. Eng. A. 2018. V. A710. P. 172 – 180.

Dey D., Bhowmik A., Biswas A. Characterization of physical and mechanical properties of aluminium based composites reinforced with titanium diboride particulates // J. Compos. Mater. 2021. V. 55, Is. 14. P. 1979 – 1991.

Rajan H. M., Ramabalan S., Dinaharan I., Vijay S. J. Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites // Mater. Des. 2013. V. 44. P. 438 – 445.

Mahamani A., Jayasree A., Mounika K. et al. Evaluation of mechanical properties of AA6061 – TiB2 /ZrB2 in-situ metal matrix composites fabricated by K2TiF6 – KBF4 – K2ZrF6 reaction system // Int. J. Microstruct. Mater. Prop. 2015. V. 10, Is. 3 – 4. P. 185 – 200.

Balandin A. A., Ghosh S., Bao W. et al. Superior thermal conductivity of single-layer graphene // Nano Lett. 2008. V. 8, Is. 3. P. 902 – 907.

Evans A. G. Structural reliability: a processing-dependent phenomenon // J. Am. Ceram. Soc. 1982. V. 65, Is. 3. P. 127 – 137.

Liu J., Yan H., Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites // Ceram. Int. 2013. V. 39, Is. 6. P. 6215 – 6221.

Sun Z., Zhao J., Wang X. et al. Reinforcing mechanisms of graphene and nano-TiC in Al2O3-based ceramic-tool materials // Nanomaterials. 2020. V. 10, Is. 9. P. 1815.

Karthikeyan G., Jinu G. R. Tensile behaviour and fractography analysis LM6/ZrO2 composites // Mater. Technol. (NYNY). 2017. V. 51, Is. 3. P. 549 – 553.

Esawi A. M., El Borady M. A. Carbon nanotube-reinforced aluminium strips // Compos. Sci. Technol. 2008. V. 68, Is. 2. P. 486 – 492.

Saboori A., Moheimani S. K., Dadkhah M. et al. An overview of key challenges in the fabrication of metal matrix nanocomposites reinforced by graphene nanoplatelets // Metals. 2018. V. 8, Is. 3. P. 172.




DOI: https://doi.org/10.30906/mitom.2024.4.76-84


© Издательский дом «Фолиум», 1998–2024