Открытый доступ Открытый доступ  Ограниченный доступ Доступ для подписчиков

Кинетика роста и микроструктура слоев боридов железа на стали AISI 1050

Сафие Ипек Айваз

Аннотация


Исследована кинетика диффузии бора в стали AISI 1050 (сталь 50). Проведено борирование стали в течение 2, 4 и 6 ч при 850, 900 и 950 °C с использованием порошка Экабор-II (Ekabor-II) методом пакетного борирования. На поверхности образцов получены боридные слои FeB/Fe2B толщиной 25,4 – 118,9 мкм. Сформированные боридные слои имеют типичную зубчатую морфологию и твердость 1071 – 1460 HV0,1. Рассчитанные по результатам диффузионно-кинетических исследований константы скорости роста боридного слоя для стали AISI 1050 при температурах борирования 850, 900 и 950 °C составляют 1,522 ' 10 – 12; 2,964 ' 10 – 13 и 6,354 ' 10 – 12 м2 ' с – 1 соответственно. Определена энергия активации диффузии бора в стали AISI 1050, равная 162,93 кДж ' моль – 1.

Ключевые слова


кинетика роста; борирование; Fe2B; AISI 1050; коэффициент диффузии; микроструктура

Полный текст:

PDF

Литература


Lindner T., Lцbel M., Sattler B., Lampke T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding // Surf. Coat. Technol. 2019. V. 371. P. 389 – 394. DOI: https://doi.org/10.1016/j.surfcoat.2018.10.017

Domнnguez M. O., Keddam M., Vargas O. A. G. et al. Bilayer growth kinetics and tribological characterization of boronized AISI M2 steel // Mater. Test. 2022. V. 64, Is. 4. P. 473 – 489. DOI: https://doi.org/10.1515/mt-2021-2091

Keddam M., Chentouf S. M. A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding // Appl. Surf. Sci. 2005. V. 252, Is. 2. P. 393 – 399. DOI: https://doi.org/10.1016/j.apsusc.2005.01.016

Sarma B., Tikekar N. M., Chandran K. S. R. Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium // Ceram. Int. 2012. V. 38, Is. 8. P. 6795 – 6805. DOI: https://doi.org/10.1016/j.ceramint. 2012.05.077

Mu D., Shen B., Zhao X. Effects of boronizing on mechanical and dry-sliding wear properties of CoCrMo alloy // Mater. Des. 2020. V. 31, Is. 8. P. 3933 – 3936. DOI: https://doi.org/ 10.1016/j.matdes.2010.03.024

Lindner T., Lцbel M., Hunger R. et al. Boriding of HVOF-sprayed inconel 625 coatings // Surf. Coat. Technol. 2020. V. 404, Art. No. 126456. DOI: 10.1016/j.surfcoat. 2020.126456

Morgado-Gonzбlez I., Ortiz-Dominguezand M., Keddam M. Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion // Mat. Test. 2022. V. 64, Is. 1. P. 55 – 66. DOI: 10.1016/j.surfcoat.2012.08.034

Turkmen I., Yalamac E., Keddam M. Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel // Surf. Coat. Technol. 2019. V. 377, Art. No. 124888. DOI: 10.1016/j.surfcoat. 2019.08.017

Genel K. Boriding kinetics of H13 steel // Vacuum. 2006. V. 80, Is. 5. P. 451 – 457. DOI: 10.1016/j.vacuum.2005.07.013

Ulutan M., Yildirim M. M., Celik O. N., Buytoz S. Tribological properties of borided AISI 4140 steel with the powder pack-boriding method // Tribol. Lett. 2010. V. 38. P. 231 – 239. DOI: 10.1007/s11249-010-9597-1

Deng D., Wang C., Liu Q., Niu T. Effect of standard heat treatment on microstructure and properties of borided Inconel 718 // T. Nonferr. Metal. Soc. 2015. V. 25, Is. 2. P. 437 – 443. DOI: 10.1016/S1003-6326(15)63621-4

Ipek Ayvaz S., Aydin I. Effect of the microwave heating on diffusion kinetics and mechanical properties of borides in AISI 316L // Trans. Indian Inst. Met. 2020. V. 73, Is. 10. P. 2635 – 2644. DOI: 10.1007/s12666-020-02072-x

Turkmen I., Yalamac E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method // J. Alloys Compd. 2018. V. 744. P. 658 – 666. DOI: 10.1016/j.jallcom.2018.02.118

Ozdemir O., Usta M., Bindal C., Ucisik A. H. Hard iron boride (Fe2B) on 99.97 wt% pure iron // Vacuum. 2006. V. 80, Is. 11 – 12. P. 1391 – 1395. DOI: 10.1016/j.vacuum.2006.01.022

Jain V., Sundararajan G. Influence of the pack thickness of the boronizing mixture on the boriding of steel // Surf. Coat. Technol. 2002. V. 149, Is. 1. P. 21 – 26. DOI: 10.1016/ S0257-8972(01)01385-8

Ipek Ayvaz S., Aydin I. Tribological and adhesion properties of microwave-assisted borided AISI 316L steel // Mater. Test. 2022. V. 64, Is. 2. P. 249 – 259. DOI: 10.1515/mt-2021-2031

Goeuriot P., Fillit R., Thevenot F. et al. The influence of alloying element additions on the boriding of steels // Mater. Sci. Eng. 1982. V. 55, Is. 1. P. 9 – 19. DOI: 10.1016/ 0025-5416(82)90078-7

Taktak S. A study on the diffusion kinetics of borides on boronized Cr-based steels // J. Mater. Sci. 2006. V. 41. P. 7590 – 7596. DOI: 10.1007/s10853-006-0847-4

Rai A. K., Vijayashanthi N., Tripathy H. et al. Investigation of diffusional interaction between P91 grade ferritic steel and Fe – 15 wt.% B alloy and study of kinetics of boride formation at high temperature // J. Nucl. Mater. 2017. V. 495. P. 58 – 66. DOI: 10.1016/j.jnucmat.2017.08.011

Kayali Y. Investigation of the diffusion kinetics of borided stainless steels // Phys. Met. Metallogr. 2013. V. 114, Is. 12. P. 1061 – 1068. DOI: 10.1134/S0031918X1322002X

Badini C., Gianoglio C., Pradelli G. The effect of carbon, chromium and nickel on the hardness of borided layers // Surf. Coat. Technol. 1987. V. 30, Is. 2. P. 157 – 170. DOI: 10.1016/0257-8972(87)90140-X

Uslu I., Comert H., Ipek M. et al. A comparasion of borides formed on AISI 1040 and AISI P20 steels // Mater. Des. 2007. V. 28, Is. 6. P. 1819 – 1826. DOI: 10.1016/j.matdes. 2006.04.019

Calik A., Sahin O., Ucar N. Mechanical properties of boronized AISI 316, AISI 1040, AISI 1045 and AISI 4140 steels // Acta Phys. Pol. 2009. V. 115, Is. 3. P. 694 – 698. DOI: 10.12693/APhysPolA.115.694

Simsek M., Calik A., Yakut A. K. et al. Boronizing effect on the corrosion behaviour of chilled cast iron and AISI 1050 steel // High Temp. Mater. Process. 2010. V. 29, Is. 4. P. 241 – 246. DOI: 10.1515/HTMP. 2010.29.4.241

Milinovic A., Marusic V., Konjatic P., Beric N. Effect of carbon content and boronizing parameters on growth kinetics of boride layers obtained on carbon steels // Materials. 2022. V. 15, Is. 5. P. 1 – 17. DOI: 10.3390/ma15051858

Hayat F., Sezgin C. T. Wear behavior of borided cold-rolled high manganese steel // Coatings. 2021. V. 11, Is. 10. Art. No. 1207. DOI: 10.3390/coatings11101207

Morgado-Gonzalez I., Ortiz-Dominguez M., Keddam M. Characterization of Fe2B layers on ASTM A1011 steel and modeling of boron diffusion // Mater. Test. 2022. V. 64, Is. 1. P. 55 – 67. DOI: 10.1515/mt-202-2007

Wang G., Jiang Y., Li Z. et al. Balance between strength and ductility of dilute Fe2B by high-throughput first-principles calculations // Ceram. Int. 2021. V. 47, Is. 4. P. 4758 – 4768. DOI: 10.1016/j.ceramint.2020.10.045

Carrera-Espinoza R., Figueroa-Lopez U., Martinez-Trinidad J. et al. Tribological behavior of borided AISI 1018 steel under linear reciprocating sliding conditions // Wear. 2016. V. 362 – 363. P. 1 – 7. DOI: 10.1016/j.wear.2016.05.003

Medvedovski E. Formation of corrosion-resistant thermal diffusion boride coatings // Adv. Eng. Mater. 2016. V. 18, Is. 1. P. 11 – 33. DOI: 10.1002/adem.201500102

Turkmen I., Yalamac E. Effect of altenative boronizing mixtures on boride layer and tribological behaviour of boronized SAE 1020 steel // Met. Mater. Int. 2022. V. 28, Is. 5. P. 1114 – 1128. DOI: 10.1007/s12540-021-00987-8

Krelling A. P., Almeida E. A. S., da Costa C. E., Milan J. C. G. Microstructural and tribological characterization of niobium boride coating produced on AISI 1020 steel via multicomponent boriding // Mater. Res. Express. 2020. V. 7, Is. 2. Art No. 026413. DOI: 10.1088/2053-1591/ab7266

Krelling A. P., Teixeira F., da Costa C. E. et al. Microabrasive wear behavior of borided steel abraded by SiO2 particles // J. Mater. Res. Technol. 2019. V. 8, Is. 1. P. 766 – 776. DOI: 10.1016/j.jmrt.2018.06.004

Atik E., Yunker U., Meric C. The effects of conventional heat treatment and boronizing on abrasive wear and corrosion of SAE 1010, SAE 1040, D2 and 304 steels // Tribol. Int. 2003. V. 36, Is. 3. P. 155 – 161. DOI: 10.1016/ S0301-679X(02)00069-5

Milinovic A., Brod S., Krumes D. et al. An investigation of boride layers growth kinetics on C15 steel // 16th International Research “Expert Conference Trends in the Development of Machinery and Associated Technology”. TMT 2012. Dubai, UAE, 2012. P. 135 – 138.

Petrova R., Suwattananont N. Surface modification of ferrous alloys with boron // J. Electron. Mater. 2005. V. 34, Is. 5. P. 575 – 582. DOI: 10.1007/s11664-005-0068-7

Turkmen I., Yalamac E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method // J. Alloys Compd. 2018. V. 744. P. 658 – 666. DOI: 10.1016/j.jallcom.2018.02.118

Bouarour B., Keddam M., Allaoui O., Azouani O. Boring kinetics of C35 steel: estimation of boron activation energy and the mass gain // Metall. Res. Technol. 2014. V. 111, Is. 2. P. 67 – 73. DOI: 10.1051/metal/2014015

Boztepe M. H., Bayramoglu M. Optimization of process parameter of boronized AISI 1050 steel using the taguchi analysis // The 17th International Conference on Machine Design and Production. Bursa, Turkey, 2016. P. 1 – 11.

Calik A., Simsek M., Karakas M. S., Ucar N. Effect of boronizing on microhardness and wear resistance of steel AISI 1050 and chilled cast iron // Met. Sci. Heat Treat. 2014. V. 56, Is. 1 – 2. P. 89 – 92. DOI: 10.1007/s11041-014-9710-4

Ortiz-Dominguez M., Zuno-Silva J., Keddam M. et al. Diffusion model and characterisation of Fe2B layers on AISI 1018 steel // Int. J. Surf. Sci. Eng. 2015. V. 9, Is. 4. P. 281 – 297. DOI: 10.1504/IJSURFSE.2015.070808

Flores-Renteria M. A., Otriz-Dominguez M., Keddam M. et al. A simple kinetic model for the growth of Fe2B layers on AISI 1026 steel during the powder-pack boriding // High Temp. Mater. Process. 2015. V. 34, Is. 1. P. 1 – 11. DOI: 10.1515/htmp-2014-0004




DOI: https://doi.org/10.30906/mitom.2023.12.18-24


© Издательский дом «Фолиум», 1998–2024